Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\frac{x+\sqrt{x}}{x-2\sqrt{x}+1}:\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{1}{1-\sqrt{x}}+\frac{2-x}{x-\sqrt{x}}\right)\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\) \(\left[\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\sqrt{x}}+\frac{2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\)\(\left[\frac{x-1+\sqrt{x}+2-x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}:\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(E=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
\(E=\frac{x}{\sqrt{x}-1}\)
b) \(E>1\Leftrightarrow\frac{x}{\sqrt{x}-1}>1\)
\(\Leftrightarrow\frac{x}{\sqrt{x}-1}-1>0\)
\(\Leftrightarrow\frac{x}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\frac{x-\sqrt{x}+1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\frac{x-2\sqrt{x}+1+\sqrt{x}}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\frac{\left(\sqrt{x}-1\right)^2+\sqrt{x}}{\sqrt{x}-1}>0\)
\(\Rightarrow\sqrt{x}-1>0\) vì tử của phân số luôn \(\ge0\forall x\ge0\)
\(\Rightarrow x>1\)
kết hợp với ĐKXĐ \(x\ge0\Rightarrow x>1\)
vậy \(x>1\) thì \(E>1\)
ĐKXĐ : x > 0 ; x ≠ 1 ; x ≠ 4
a) \(A=\left(1-\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{1}{\sqrt{x-1}}\right)\div\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\left(\frac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\left(\frac{x-1-4\sqrt{x}+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\div\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\times\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}-3}{\sqrt{x}-2}\)
b) Với x = \(11-6\sqrt{2}\)
\(A=\frac{\sqrt{11-6\sqrt{2}}-3}{\sqrt{11-6\sqrt{2}}-2}\)
\(=\frac{\sqrt{2-6\sqrt{2}+9}-3}{\sqrt{2-6\sqrt{2}+9}-2}\)
\(=\frac{\sqrt{\left(\sqrt{2}\right)^2-2\cdot\sqrt{2}\cdot3+3^2}-3}{\sqrt{\left(\sqrt{2}\right)^2-2\cdot\sqrt{2}\cdot3+3^2}-2}\)
\(=\frac{\sqrt{\left(\sqrt{2}-3\right)^2}-3}{\sqrt{\left(\sqrt{2}-3\right)^2}-2}\)
\(=\frac{\left|\sqrt{2}-3\right|-3}{\left|\sqrt{2}-3\right|-2}\)
\(=\frac{3-\sqrt{2}-3}{3-\sqrt{2}-2}=\frac{-\sqrt{2}}{1-\sqrt{2}}\)
c) Ta có : \(A=\frac{\sqrt{x}-3}{\sqrt{x}-2}=\frac{\sqrt{x}-2-1}{\sqrt{x}-2}=1-\frac{1}{\sqrt{x}-2}\)
Để A nguyên => \(\frac{1}{\sqrt{x}-2}\)nguyên
=> \(1⋮\sqrt{x}-2\)
=> \(\sqrt{x}-2\inƯ\left(1\right)=\left\{\pm1\right\}\)
=> \(\sqrt{x}\in\left\{3;1\right\}\)
=> \(x=9\)( không nhận x = 1 do ĐKXĐ )
d) Để A = -2
=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}=-2\)( x > 0 ; x ≠ 1 ; x ≠ 4 )
=> \(\sqrt{x}-3=-2\sqrt{x}+4\)
=> \(\sqrt{x}+2\sqrt{x}=4+3\)
=> \(3\sqrt{x}=7\)
=> \(9x=49\)( bình phương hai vế )
=> \(x=\frac{49}{9}\)( tm )
e) Để A có giá trị âm
=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}< 0\)
Xét hai trường hợp :
1.\(\hept{\begin{cases}\sqrt{x}-3>0\\\sqrt{x}-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}>3\\\sqrt{x}< 2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>9\\x< 4\end{cases}}\)( loại )
2. \(\hept{\begin{cases}\sqrt{x}-3< 0\\\sqrt{x}-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}< 3\\\sqrt{x}>2\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 9\\x>4\end{cases}}\Leftrightarrow4< x< 9\)
Vậy với 4 < x < 9 thì A có giá trị âm
f) Để A < -2
=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}< -2\)
=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}+2< 0\)
=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}+\frac{2\sqrt{x}-4}{\sqrt{x-2}}< 0\)
=> \(\frac{3\sqrt{x}-7}{\sqrt{x}-2}< 0\)
Xét hai trường hợp :
1. \(\hept{\begin{cases}3\sqrt{x}-7< 0\\\sqrt{x}-2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}3\sqrt{x}< 7\\\sqrt{x}>2\end{cases}}\Leftrightarrow\hept{\begin{cases}9x< 49\\x>4\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{49}{9}\\x>4\end{cases}}\Leftrightarrow4< x< \frac{49}{9}\)
2. \(\hept{\begin{cases}3\sqrt{x}-7>0\\\sqrt{x}-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}3\sqrt{x}>7\\\sqrt{x}< 2\end{cases}}\Leftrightarrow\hept{\begin{cases}9x>49\\x< 4\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{49}{9}\\x< 4\end{cases}}\)( loại )
Vậy với 4 < x < 49/9 thì A < -2
g) Để \(A>\sqrt{x}-1\)
=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}>\sqrt{x}-1\)
=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}-\left(\sqrt{x}-1\right)>0\)
=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-2}>0\)
=> \(\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{x-3\sqrt{x}+2}{\sqrt{x}-2}>0\)
=> \(\frac{-x+4\sqrt{x}-5}{\sqrt{x}-2}>0\)
Ta có : \(-x+4\sqrt{x}-5=-\left(x-4\sqrt{x}+4\right)-1=-\left(\sqrt{x}-2\right)^2-1\le-1< 0\left(\forall\ge0\right)\)
Nên để A > 0 thì ta chỉ cần xét \(\sqrt{x}-2< 0\)
\(\sqrt{x}-2< 0\Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)
Kết hợp với ĐKXĐ => \(\hept{\begin{cases}0< x< 4\\x\ne1\end{cases}}\)thì tm
\(a,P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\left(x\ge0;x\ne1\right)\\ P=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\\ b,P=-1\Leftrightarrow\sqrt{x}-1=-\sqrt{x}-1\\ \Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\\ c,P\in Z\Leftrightarrow\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\in Z\\ \Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{1;2\right\}\left(\sqrt{x}+1\ge1\right)\\ \Leftrightarrow\sqrt{x}=0\left(x\ne1\right)\\ \Leftrightarrow x=0\)
\(d,P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}< 1\left(\dfrac{2}{\sqrt{x}+1}>0\right)\\ e,P=1-\dfrac{2}{\sqrt{x}+1}\\ \sqrt{x}+1\ge1\Leftrightarrow-\dfrac{2}{\sqrt{x}+1}\ge-\dfrac{2}{1}=-2\\ \Leftrightarrow P=1-\dfrac{2}{\sqrt{x}+1}\ge1-\left(-2\right)=3\)
Dấu \("="\Leftrightarrow x=0\)
a) ĐKXĐ: \(x\ge0,x\ne1\)
\(P=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=-1\)
\(\Leftrightarrow-\sqrt{x}-1=\sqrt{x}-1\Leftrightarrow2\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)
c) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\in Z\)
\(\Leftrightarrow\sqrt{x}+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Kết hợp đk:
\(\Leftrightarrow x\in\left\{0\right\}\)
d) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}< 1\)
e) \(P=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)
Do \(\sqrt{x}+1\ge1\Leftrightarrow-\dfrac{2}{\sqrt{x}+1}\ge-2\)
\(\Leftrightarrow P=1-\dfrac{2}{\sqrt{x}+1}\ge1-2=-1\)
\(minP=-1\Leftrightarrow x=0\)
\(2M=\frac{2\sqrt{x}+2}{\sqrt{x}+2}\)
để 2M có giá trị nguyên thì \(2\sqrt{x}+2⋮\sqrt{x}+2\)(1)
Lại có \(2\sqrt{x}+4⋮\sqrt{x}+2\)(2)
\(\Rightarrow2⋮\sqrt{x}+2\)(lấy (2) trừ (1))
mà \(\sqrt{x}+2\ge2\)
\(\Rightarrow\sqrt{x}+2=2\) ( vì x thuộc Z)
=> x=0
Ta có: \(M=\frac{\sqrt{x}+1}{\sqrt{x}+2}\) ( ĐK: \(x\ge0\) )
\(\Leftrightarrow2M=\frac{2\left(\sqrt{x}+1\right)}{\sqrt{x}+2}\)
\(\Leftrightarrow2M=\frac{2\sqrt{x}+2}{\sqrt{x}+2}\)
\(\Leftrightarrow2M=\frac{2\sqrt{x}+4-2}{\sqrt{x}+2}\)
\(\Leftrightarrow2M=\frac{2\sqrt{x}+4}{\sqrt{x}+2}-\frac{2}{\sqrt{x}+2}\)
\(\Leftrightarrow2M=2-\frac{2}{\sqrt{x}+2}\)
Để 2M có giá trị nguyên <=> \(2⋮\sqrt{x}+2\)
\(\Leftrightarrow\sqrt{x}+2\inƯ\left(2\right)\)
\(\Leftrightarrow\sqrt{x}+2\in\left\{-1;-2;1;2\right\}\)
Vì \(x\ge0\Leftrightarrow\sqrt{x}+2\ge2\)
\(\Rightarrow\sqrt{x}+2=2\)
\(\Leftrightarrow\sqrt{x}=0\Rightarrow x=0\)
Vậy khi x = 0 thì 2M có giá trị nguyên!
Chúc bạn học tốt! :))