Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta gọi số hạng thứ 10 là a
Khoảng cách giữa các số là 2
Suy ra ta có công thức tính số các số hạng của dãy, cụ thể ở đây là 10: (a - 2012) : 2 + 1 = 10
Ta có : (a - 2012) : 2 + 1 = 10
Giải ra ta được a = 2030
Vậy số hạng thứ 10 là 2030
b) Tổng 10 số hạng đầu tiên là:
(2030 + 2012) x 10 : 2 = 20210
Dấu "." là dấu "x" nhé, học sinh cấp 2 phải dùng dấu "." =)))
Đặt A = 2 + 6 + 12 + 20 + ..... + 10100
A = 1.2 + 2.3 + 3.4 + 4.5 + .. + 100.101
3.A = 1.2.3 + 2.3.3 + 3.4.3 + 4.5.3 + .. + 100.101.3
3.A = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 100.101. (102 - 99)
3.A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 100.101.102 - 99.100.101
Các số trên đều bị giản ước bởi các số trước còn lại 100.101.102
=> 3A = 100.101.102
=> A = 100.101.102 : 3 = 100.101.34 = 343400
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...=\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...\right):2\)
Ta có: (100 - 1) x 2 + 1 = 199
Vậy số hạng thứ 100 là: \(\frac{1}{199.201}\)
Tổng dãy trên là: \(\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{199.201}\right):2=\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{199}-\frac{1}{201}\right):2=\left(1-\frac{1}{201}\right):2=\frac{200}{201}:2=\frac{100}{201}\)
Tổng của 6 số hạng đầu tiên của dãy số trên là: 1+6+1+7+1+8=24
a) Quy luật :
Ta có : \(\frac{1}{8}\)= \(\frac{1}{2\cdot4}\)
\(\frac{1}{24}\)= \(\frac{1}{4\cdot6}\)
\(\frac{1}{48}\)= \(\frac{1}{6\cdot8}\)
\(\frac{1}{80}\)= \(\frac{1}{8\cdot10}\)
Do đó 2 số tiếp theo sẽ có mẫu lần lượt là 120 ( 10 . 12 ) và 168 ( 12 . 14 )
2 số tiếp theo là : \(\frac{1}{120}\)và \(\frac{1}{168}\)
b) Tổng 6 số hạng đầu của dãy số là :
\(\frac{1}{8}\)+ \(\frac{1}{24}\)+ \(\frac{1}{48}\)+ \(\frac{1}{80}\)+ \(\frac{1}{120}\)+ \(\frac{1}{168}\)
= \(\frac{1}{2\cdot4}\)+ \(\frac{1}{4\cdot6}\)+ \(\frac{1}{6\cdot8}\)+ \(\frac{1}{8\cdot10}\)+ \(\frac{1}{10\cdot12}\)+ \(\frac{1}{12\cdot14}\)
= \(\frac{1}{2}\). ( \(\frac{2}{2\cdot4}\)+ \(\frac{2}{4\cdot6}\)+ \(\frac{2}{6\cdot8}\)+ \(\frac{2}{8\cdot10}\)+ \(\frac{2}{10\cdot12}\)+ \(\frac{2}{12\cdot14}\))
= 1/2 x ( 1 - 1/4 + 1/4 - 1/6 + 1/6- 1/8 + 1/8 - 1/10 + 1/10 - 1/12 + 1/12 - 1/14 )
= 1/2 x ( 1 - 1/14 )
= 1/2 x 13/14
= 13/28
1. Phương pháp 1: ( Hình 1)
Nếu thì ba điểm A; B; C thẳng hàng.
2. Phương pháp 2: ( Hình 2)
Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.
(Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)
3. Phương pháp 3: ( Hình 3)
Nếu AB a ; AC A thì ba điểm A; B; C thẳng hàng.
( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng
a’ đi qua điểm O và vuông góc với đường thẳng a cho trước
- tiết 3 hình học 7)
Hoặc A; B; C cùng thuộc một đường trung trực của một
đoạn thẳng .(tiết 3- hình 7)
4. Phương pháp 4: ( Hình 4)
Nếu tia OA và tia OB là hai tia phân giác của góc xOy
thì ba điểm O; A; B thẳng hàng.
Cơ sở của phương pháp này là:
Mỗi góc có một và chỉ một tia phân giác .
* Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,
thì ba điểm O, A, B thẳng hàng.
5. Nếu K là trung điểm BD, K’ là giao điểm của BD và AC. Nếu K’
Là trung điểm BD thì K’ K thì A, K, C thẳng hàng.
(Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)
C. Các ví dụ minh họa cho tùng phương pháp:
Phương pháp 1
Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA
(tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm
D sao cho CD = AB.
Chứng minh ba điểm B, M, D thẳng hàng.
Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh
Do nên cần chứng minh
BÀI GIẢI:
AMB và CMD có:
AB = DC (gt).
MA = MC (M là trung điểm AC)
Do đó: AMB = CMD (c.g.c). Suy ra:
Mà (kề bù) nên .
Vậy ba điểm B; M; D thẳng hàng.
Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà AD = AB, trên tia đối
tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED
sao cho CM = EN.
Chứng minh ba điểm M; A; N thẳng hàng.
Gợi ý: Chứng minh từ đó suy ra ba điểm M; A; N thẳng hàng.
BÀI GIẢI (Sơ lược)
ABC = ADE (c.g.c)
ACM = AEN (c.g.c)
Mà (vì ba điểm E; A; C thẳng hàng) nên
Vậy ba điểm M; A; N thẳng hàng (đpcm)
BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1
Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối
của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và
CD.
Chứng minh ba điểm M, A, N thẳng hàng.
Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx BC (tia Cx và điểm A ở
phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia
BC lấy điểm F sao cho BF = BA.
Chứng minh ba điểm E, A, F thẳng hàng.
Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm
E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)
Gọi M là trung điểm HK.
Chứng minh ba điểm D, M, E thẳng hàng.
Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ
Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),
trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.
Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.
Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các
đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.
Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.
PHƯƠNG PHÁP 2
Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên
Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung
điểm BD và N là trung điểm EC.
Chứng minh ba điểm E, A, D thẳng hàng.
Hướng dẫn: Xử dụng phương pháp 2
Ta chứng minh AD // BC và AE // BC.
BÀI GIẢI.
BMC và DMA có:
MC = MA (do M là trung điểm AC)
(hai góc đối đỉnh)
MB = MD (do M là trung điểm BD)
Vậy: BMC = DMA (c.g.c)
Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)
Chứng minh tương tự : BC // AE (2)
Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)
và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng.
Ví dụ 2: Cho hai đoạn thẳng AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia
AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho
D là trung điểm AN.
2; 11; 29; 56; 92;...;
St2 = 2 + 9
St3 = 2 + 9 + 18 = 2 + 9 \(\times\) ( 1 + 2)
St4 = 2 + 9 + 18 + 27 = 2 + 9 \(\times\) (1 + 2 + 3)
St5 = 2 + 9 + 18 + 27 + 36 = 2 + 9 \(\times\)( 1 + 2 + 3 + 4)
..................
Stn = 2 + 9 \(\times\) ( 1 + 2 + 3 + ...+ n-1)
Stn = 2 + 9 \(\times\) (n-1+1)\(\times\)(n-1):2
Stn = 2 + 9 \(\times\) (n-1)\(\times\)n : 2
Số thứ 100 tức n = 100. Thay n = 100 vào biểu thức
Stn = 2 + 9 \(\times\) (n-1) \(\times\) n : 2 ta có:
Stn = 2 + 9 \(\times\) (100 - 1) \(\times\) 100 : 2 = 44552
b, St1 = 2
St2 = 2 + 9 \(\times\) 1 \(\times\) 2 : 2
St3 = 2 + 9 \(\times\) 2 \(\times\) 3 : 2
St4 = 2 + 9 \(\times\) 3 \(\times\) 4 : 2
......................................
St10 = 2 + 9 \(\times\) 9 \(\times\) 10 : 2
Cộng vế với vế ta được:
St1+St2+...+St10 = 2 \(\times\)10 + \(\dfrac{9}{2}\) \(\times\)( 1\(\times\)2 + 2 \(\times\)3 +...+9\(\times\)10)
Đặt : A = 1\(\times\)2 + 2\(\times\)3 + 3\(\times\)4 +...+ 9 \(\times\)10
3 A = 1\(\times\)2\(\times\)3 + 3\(\times\)4\(\times\)3 +...+ 9\(\times\)10\(\times\)3
3A = 1\(\times\)2\(\times\)3 + 3\(\times\)4\(\times\)(5-2) +...+ 9\(\times\)10\(\times\)(11-8)
3A = 1\(\times\)2\(\times\)3 + 3\(\times\)4\(\times\)5 - 3\(\times\)4\(\times\)2 +...+ 9\(\times\)10\(\times\)11-9\(\times\)10\(\times\)8
3A = 9\(\times\)10\(\times\)11 ⇒ A = 9\(\times\)10\(\times\)11 : 3 = 330
S = 20 + \(\dfrac{9}{2}\) \(\times\) 330 = 1505
36 nha ! mk cũng ko biết đúng không nhưng đúng thì tick nha !