K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2019

Hình bạn tự vẽ nha!

Bài 2:

a) Xét 2 \(\Delta\) vuông \(ABH\)\(KBH\) có:

\(\widehat{AHB}=\widehat{KHB}=90^0\left(gt\right)\)

\(AH=KH\left(gt\right)\)

Cạnh BH chung

=> \(\Delta ABH=\Delta KBH\) (cạnh huyền - cạnh góc vuông)

b) Ta có: \(\Delta ABC\) vuông tại \(A\left(gt\right)\)

=> \(\widehat{B}+\widehat{C}=90^0\) (tính chất tam giác vuông)

=> \(2.\widehat{B}=90^0\)

=> \(\widehat{B}=90^0:2\)

=> \(\widehat{B}=45^0\)

=> \(45^0+\widehat{C}=90^0\)

=> \(\widehat{C}=90^0-45^0\)

=> \(\widehat{C}=45^0.\)

Xét \(\Delta BKC\) có:

\(\widehat{B}+\widehat{C}+\widehat{BKC}=180^0\) (định lí tổng 3 góc trong một tam giác)

Thay số vào ta được:

\(45^0+45^0+\widehat{BKC}=180^0\)

=> \(90^0+\widehat{BKC}=180^0\)

=> \(\widehat{BKC}=180^0-90^0\)

=> \(\widehat{BKC}=90^0.\)

Vậy \(\widehat{BKC}=90^0.\)

Chúc bạn học tốt!

11 tháng 10 2019

Thanks bn nhìu👍

Bài 1a) Cho 🔺ABC vuông tại A, biết AB=9cm; BC=15cm. Tính chu vi hình 🔺ABC. b) Cho🔺ABC cân tại A biết góc C=50°.Tính số đo góc A và BBài 2Cho 🔺ABC có AB=6 cm, AC=8cm, BC=10cma) CM: 🔺ABC vuông. b) Kẻ AH vuông góc với BC. Biết AH = 4,8 cm. Tính độ dài đoạn BH, CH. c) Lấy điểm I bất kì trên cạnh AH ( I không trùng với A và H). Cm: IC>IB. Bài 3Cho 🔺ABC vuông tại A, BD là phân giác của góc B. Vẽ Đi vuông góc...
Đọc tiếp

Bài 1

a) Cho 🔺ABC vuông tại A, biết AB=9cm; BC=15cm. Tính chu vi hình 🔺ABC. 

b) Cho🔺ABC cân tại A biết góc C=50°.Tính số đo góc A và B

Bài 2

Cho 🔺ABC có AB=6 cm, AC=8cm, BC=10cm

a) CM: 🔺ABC vuông. 

b) Kẻ AH vuông góc với BC. Biết AH = 4,8 cm. Tính độ dài đoạn BH, CH. 

c) Lấy điểm I bất kì trên cạnh AH ( I không trùng với A và H). Cm: IC>IB. 

Bài 3

Cho 🔺ABC vuông tại A, BD là phân giác của góc B. Vẽ Đi vuông góc với BC (I thuộc BC). Gọi K là giao điểm của hai đường thẳng Đi và AB. Cm rằng 

a) 🔺ABC=🔺IBD

b) BD vuông góc với AI

c) DK=DC

d) Cho AM=6cm; AC=8cm.Hãy tính IC?

Bài 4

Cho 🔺ABC cân tại A. Tia phân giác của góc Bác cắt BC tại D

a) CM: 🔺ADB=🔺ADC

b) CM BD =DC; AD vuông góc với BC

c) Kể DK vuông góc với AB tại K, DE vuông góc với AC tại E. CM: 🔺DKE cân tại D. 

CM: KE//BC

Bài 5 

Cho 🔺 ABC vuông tại A, biết AB= 3cm,AC=4cm.Tia phân giác gốc B cắt cạnh AC tại F. Qua F kể đường thẳng vuông góc với cạnh BC tại K

Bài 6

Cho 🔺MNP cân tại M. Kẻ MI vuông góc với NP (I thuộc NP) 

a) CM: IN=IP

b) Kẻ IH vuông góc với Mn (H thuộc MN) và IK vuông góc với MP( K thuộc MP). CM: 🔺IHK là🔺cân. 

c) CM: HK//NP

Bài 7

Cho 🔺ABC có góc B<góc C

a) So sánh độ dài các cạnh AB và AC

b) Gọi M là Trung điểm của BC. Trên tia đối của tia Mà lấy điểm D sao cho MD=MA. CM: góc CDA< góc CAD

Giải hết đống này hộ mình nha. Mình mãi mình KTTT rồi. Thanks all ❤️❤️❤️

 

 

 

0

a: Xét ΔABM và ΔNCM có

MA=MN

\(\widehat{AMB}=\widehat{NMC}\)

MB=MC

Do đo: ΔABM=ΔNCM

b: Xét tứ giác ABNC có

M là trung điểm của AN

M là trung điểm của BC

Do đó: ABNC là hình bình hành

Suy ra: AB//CN

 

6 tháng 5 2019

a) Vì tam giác ABC cân tại A =>AB=AC và góc ABC=góc ACB hay góc HBM= góc KCM

Vì M là trung điểm của BC =>BM=MC

   Xét tam giác ABM và tam giác ACM có

               AB=AC

               BM=CM

               Chung cạnh AM

  Do đó tam giac ABM = tam giác ACM (c.c.c)

 b) Vì MH vuông góc với AB =>góc BHM=90

          MK vuông góc với AC =>góc MKC=90

          Do đó góc BHM = góc MKC =90

      Xét tam giac BHM và tam giác CKM có

             góc BHM= góc CKM=90

             BM=CM

             góc HBM= góc KCM

   Do đó tam giac BHM = tam giac CKM (cạnh huyền-góc nhọn)

    =>BH=CK (hai cạnh tương ứng)

c)Vì BP vuông góc với AC,MK vuông góc với AC

      =>BP song song với MK
      =>góc PBM= góc KMC ( hai góc đồng vị)

Vì tam giác BHM = tam giác CKM => góc BMH = góc CMK

      Do đó góc PBM = góc HMB hay góc IBM = góc IMB

  Trong tam giác BIM có góc IBM = góc IMB => tam giác BIM cân

3 tháng 2 2020

a, tam giác ABC cân tại A => góc ABC = (180 - góc BAC) : 2  (tính chất)

AE = AD (gt) => tam giác ADE cân tại A => góc ADE = (180 - góc DAE) : 2 (tính chất)

góc BAC = góc DAE (đối đỉnh)

=> góc ABC = góc ADE 

mà 2 góc này so le trong

=> DE // BC (đl)

b, xét tam giác EAB và tam giác DAC có : 

AB = AC do tam giác ABC cân tại A (gt)

AE = AD (gt_

góc EAB = góc DAC (đối đỉnh)

=> tam giác EAB = tam giác DAC (c-g-c)

=> BE = CD (đn)

c, có AB = AC (câu b)

AE = AD (gt)

AB + AD = BD

AC + AE = CE

=> EC = DB 

xét tam giác BED và tam giác CED có : EB = CD (Câu b)

góc EBD = góc ECD do tam giác EAB = tam giác DAC (câu b)

=> tam giác BED = tam giác CED (c-g-c)