Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(a,\left(x+1\right)^2=3\)
\(\Rightarrow x+1=\pm\sqrt{3}\)
\(\Rightarrow x=\pm\sqrt{3}-1\)
\(b,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\)
\(\Rightarrow\left(x-1\right)^{x+6}-\left(x-1\right)^{x+2}=0\)
\(\Rightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^4-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^4-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^4=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x-1=\pm1\Rightarrow x=2or\text{ }x=0\end{cases}}\)
\(c,\left(x+\frac{1}{2}\right)^2=\frac{4}{25}\)
\(\Rightarrow x+\frac{1}{2}=\pm\sqrt{\frac{4}{25}}\)
\(\Rightarrow x+\frac{1}{2}=\pm\frac{2}{5}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{1}{2}=\frac{2}{5}\\x+\frac{1}{2}=-\frac{2}{5}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{10}\\x=-\frac{9}{10}\end{cases}}\)
2, \(a,\sqrt{x}=4\)
\(\Rightarrow\sqrt{x}=\sqrt{16}\)
\(\Rightarrow x=16\)
\(b,\sqrt{x+1}=5\)
\(\Rightarrow\sqrt{x+1}=\sqrt{25}\)
\(\Rightarrow x+1=25\)
\(\Rightarrow x=24\)
\(\Rightarrow5^{\left(x+2\right)\left(x+3\right)}=1\)
\(\Rightarrow5^{\left(x+2\right)\left(x+3\right)}=5^0\)
\(\Rightarrow\left(x+2\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}}\)
\(d,\left(2x-1\right)^{12}=\left(x+1\right)^{12}\)
\(\Rightarrow\left(2x-1\right)^{12}\div\left(x+1\right)^{12}=1\)
\(\Rightarrow\)
1. A = 75(42004 + 42003 +...+ 42 + 4 + 1) + 25
A = 25 . [3 . (42004 + 42003 +...+ 42 + 4 + 1) + 1]
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 3 + 1)
A = 25 . (3 . 42004 + 3 . 42003 +...+ 3 . 42 + 3 . 4 + 4)
A = 25 . 4 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1)
A =100 . (3 . 42003 + 3 . 42002 +...+ 3 . 4 + 3 + 1) \(⋮\) 100
Ta có :
1) 45^10 . 5^30= (5.9)^10 . 5^30 = 5^10 . 5^30 . 9^10 = 5^40 . 3^20 = 25^20 . 3^20=75^20
2)\(\sqrt{40+2}=\sqrt{42}<\sqrt{49}=7=6+1=\sqrt{36}+\sqrt{1}<\sqrt{40}+\sqrt{2}\)
Vậy \(\sqrt{40+2}<\sqrt{40}+\sqrt{2}\)
3)\(Cho\frac{x}{3}=\frac{y}{4}=k\Rightarrow x=3k;y=4k\)
Ta lại có:
\(xy=12\Rightarrow3k.4k=12\)
\(12.k^2=12\Rightarrow k^2=1\Rightarrow k=1:-1\)
\(Vơik=1\Rightarrow x=1.3=3;y=1.4=4\)
\(k=-1\Rightarrow x=-1.3=-3;y=-1.4=-4\)