Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M A B C D
+) Ta có :
\(AMC+CMB=180^0\) (kề bù)
Mà \(BMC=3.CMA\)
\(\Leftrightarrow CMA+3CMA=180^0\)
\(\Leftrightarrow CMA.\left(1+3\right)=180^0\)
\(\Leftrightarrow CMA.4=180^0\)
\(\Leftrightarrow CMA=45^0\)
\(\Leftrightarrow BMC=135^0\)
+) Ta có :
\(AMC=BMD\) (đối đỉnh)
Mà \(AMC=45^0\)
\(\Leftrightarrow BMD=45^0\)
+) Ta có :
\(BMC=AMD\) (đối đỉnh)
Mà \(BMC=135^0\)
\(\Leftrightarrow AMD=135^0\)
M A B C D
Ta có: \(\widehat{AMC}+\widehat{AMD}=180^o\)(2 góc kề bù) (1)
Mà \(\widehat{AMC}=2\widehat{AMD}\)(Đề cho) (Ngoặc ''}'' 2 điều lại)
=> \(2\widehat{AMD}+\widehat{AMD}=180^o\)
=> \(\left(2+1\right)\widehat{AMD}=180^o\)
=> \(3\widehat{AMD}=180^o\)
=> \(\widehat{AMD}=180^o:3\)
=> \(\widehat{AMD}=60^o\)(2)
Từ (1) và (2) => \(\widehat{AMC}=180^o-60^o=120^o\)
Lại có: \(\widehat{AMC}=\widehat{BMD}\)(2 góc đối đỉnh) (Ngoặc ''}'' 2 điều lại)
=> \(\widehat{BMD}=120^o\)
Mặt khác: \(\widehat{AMD}=\widehat{BMC}\)(2 góc đối đỉnh)
Mà \(\widehat{AMD}=60^o\)(Theo (2)) (Ngoặc ''}'' 2 điều lại)
=> \(\widehat{BMC}=60^o\)
Vậy \(\widehat{AMC}=\widehat{BMD}=120^o\)
\(\widehat{AMD}=\widehat{BMC}=60^o\)
x y a b O 48
Vì xOb và xOa kề bù
\(\Rightarrow\widehat{xOb}+\widehat{xOa}=180^o\left(kb\right)\)
\(\Rightarrow48^o+\widehat{xOa}=180^o\Leftrightarrow\widehat{xOa}=180^o-48^o=132^o\)
Vì xOb và aOy đối đỉnh
\(\Rightarrow\widehat{xOb}=\widehat{aOy}=48^o\)
Vì xOa và yOb đổi đính
\(\Rightarrow\widehat{xOa}=\widehat{yOb}=132^o\)
các cậu còn lại tương tự
ta có:\(\widehat{aOb}\) = 180
\(\Rightarrow\)3 x \(\widehat{aOc}\)=180
\(\Rightarrow\)\(\widehat{aOc}\)=180 : 3 = 60
\(\Rightarrow\)\(\widehat{aOc}\)=\(\widehat{bOd}\)= 60 (2 góc đối đỉnh)
ta có: \(\widehat{aOc}\)+\(\widehat{cOb}\)= 180 (2 góc kề bù)
\(\Rightarrow\)60 + \(\widehat{cOb}\)= 180
\(\Rightarrow\)\(\widehat{cOb}\)= 180 - 60 = 120
\(\Rightarrow\)\(\widehat{aOd}\)=\(cOb\)= 120 (2 goc đối đỉnh)
Vậy \(\widehat{aOc}\)= 60;\(\widehat{cOb}\)= 120;\(\widehat{bOd}\)= 60;\(\widehat{aOd}\)=120
Có: \(\begin{cases}\widehat{AOD}-\widehat{BOD}=30\\\widehat{AOD}+\widehat{BOD}=180\end{cases}\)\(\Leftrightarrow\begin{cases}\widehat{AOD}=30+\widehat{BOD}\\30+\widehat{BOD}+\widehat{BOD}=180\end{cases}\)\(\Leftrightarrow\begin{cases}\widehat{AOD}=30+\widehat{BOD}\\2\widehat{BOD}=150\end{cases}\)
\(\Leftrightarrow\begin{cases}\widehat{AOD}=105\\\widehat{BOD}=75\end{cases}\)
Lại có: \(\widehat{AOC}=\widehat{BOD}=75;\widehat{BOC}=\widehat{AOD}=105\) ( cặp góc đối đỉnh)
Có \(\widehat{CMA}+\widehat{CMB}=180^0\) (Hai góc kề bù)
\(\Leftrightarrow5\widehat{CMA}+\widehat{CMA}=180^0\Leftrightarrow\widehat{CMA}=30^0\)
\(\Rightarrow\widehat{BMC}=5.30^0=150^0\)
Có \(\widehat{CMA}+\widehat{AMD}=180^0\)
\(\Leftrightarrow\widehat{AMD}=180^0-30^0=150^0\)
Có \(\widehat{DMB}=\widehat{AMC}=150^0\) (Hai góc đối đỉnh)
Vậy...
\(\widehat{DMB}=\widehat{AMC}=30^0\) nhá