Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn cứ giải như bình thường thôi. Không việc gì phải đoán mò cả!
\(A=\frac{\left(x-1\right)^2}{x^2-4x+3}=\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x-3\right)}< 1\)
\(\Leftrightarrow\left(x-1\right)^2< \left(x-1\right)\left(x-3\right)\)
\(\Leftrightarrow2\left(x-1\right)< 0\)
\(\Leftrightarrow x< 1\)
Vậy tập nghiệm của bất phương trình là \(S=\left\{x< 3\right\}\)
\(ĐKXĐ:x\ne1;x\ne3\)
để \(A< 1\) thì \(\frac{\left(x-1\right)^2}{x^2-4x+3}< 1\Leftrightarrow\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x-3\right)}-1< 0\)
\(\Leftrightarrow\frac{x-1}{x-3}-\frac{x-3}{x-3}< 0\)
\(\Leftrightarrow\frac{x-1-x+3}{x-3}< 0\)
\(\Leftrightarrow\frac{2}{x-3}< 0\)
\(\Rightarrow x-3< 0\) vì \(2>0\)
\(\Rightarrow x< 3\)
kết hợp với \(ĐKXĐ:x\ne1;x\ne3\) ta có \(\hept{\begin{cases}x< 3\\x\ne1\end{cases}}\) thì \(A< 1\)
1) đặt 2x+1 = a => \(a^4-3a^2+2=\left(a^2-1\right)\left(a^2-2\right)=\)\(\left(a-1\right)\left(a+1\right)\left(a-\sqrt{2}\right)\left(a+\sqrt{2}\right)\)
=(2x+1-1)(2x+1+1)(2x+1-\(\sqrt{2}\))(2x+1+\(\sqrt{2}\)) = 4x(x+1)(2x+1-\(\sqrt{2}\))(2x+1+\(\sqrt{2}\))
2) =(x2-x)(x2-x-2)-3
đặt x2-x = b => b(b-2)-3 = b2-2b-3 = (b+1)(b-3) = (x2-x+1)(x2-x-3)
3) đặt x2+2x-1 = c => c2-3xc+2x2 = (c-x)(c-2x) = (x2+2x-1-x)(x2+2x-1-2x) = (x2+x-1)(x2-1) = (x2+x-1)(x-1)(x+1)
tìm x
x3-8 +(x-2)(x+1)=0 <=> (x-2)(x2+2x+4)+(x-2)(x+1)=0 <=>(x-2)(x2+2x+4+x+1)=0 <=> x=2 (vì x2+3x+5= (x+\(\frac{3}{2}\))2 +\(\frac{11}{4}\)>0)
vậy x=2
2) \(x\left(x-1\right)\left(x+1\right)\left(x-2\right)-3\)
\(=\left(x^2-x\right)\left(x^2-x-2\right)-3\)(1)
Đặt \(x^2-x=t\)
\(\Rightarrow\left(1\right)=t\left(t-2\right)-3=t^2-2t+1-4\)
\(=\left(t-1\right)^2-4\)
\(=\left(t+3\right)\left(t-5\right)\)
Thay \(x^2-x=t\), ta được:
\(BTDNT=\left(x^2-x+3\right)\left(x^2-x-5\right)\)
a: ĐKXĐ: \(x\notin\left\{-1;3\right\}\)
b: \(A=\dfrac{3x\left(x+1\right)}{\left(x+1\right)\left(2x-6\right)}=\dfrac{3x}{2x-6}\)
Để A=0 thì 3x=0
hay x=0
Ta có: \(x^4-30x^2+31x-30=0\) \(\Rightarrow x^4+x-30x^2+30x-30=0\)
\(\Rightarrow x\left(x^3+1\right)-30\left(x^2-x+1\right)=0\)
\(\Rightarrow x\left(x+1\right)\left(x^2-x+1\right)-30\left(x^2-x+1\right)=0\)
\(\Rightarrow\left(x^2-x+1\right)\left(x^2+x-30\right)=0\)
Xét \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
\(\Rightarrow x^2+x-30=0\Rightarrow x^2-5x+6x-30=0\)
\(\Rightarrow\left(x-5\right)\left(x+6\right)=0\Rightarrow\orbr{\begin{cases}x-5=0\\x+6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-6\end{cases}}}\)
Vậy x=5 hoặc x = -6
\(f\left(1\right)=\left(1^2-1-1\right)^{100}+\left(1^2+1-1\right)^{100}-2=\left(-1\right)^{100}+1^{100}-2=1+1-2=0\)
\(\Rightarrow f\left(x\right)⋮\left(x-1\right)\)(1)
\(f\left(-1\right)=\left[\left(-1\right)^2-\left(-1\right)-1\right]^{100}+\left[\left(-1\right)^2+\left(-1\right)-1\right]^{100}-2\)
\(=1^{100}+\left(-1\right)^{100}-2=1+1-2=0\)
\(\Rightarrow f\left(x\right)⋮\left(x+1\right)\)(2)
Mà x - 1 và x + 1 không có nhân tử chung khác 1 (3)
Từ (1), (2) và (3) \(\Rightarrow f\left(x\right)⋮\left[\left(x-1\right)\left(x+1\right)\right]\Rightarrow f\left(x\right)⋮\left(x^2-1\right)\)
(8x-3)(3x+2)-(4x+7)(x+4) = (2x+1)(5x-1)-33
(24x2-9x+16x-6)-(4x2+7x+16x+28) = (10x2+5x-2x-1)-33
24x2+7x-6-4x2-23x-28 = 10x2+3x-1-33
20x2-16x-34 = 10x2+3x-34
<=> 20x2-16x = 10x2+3x
2x2-19x=0
2x(x-19)=0
=>\(\left[{}\begin{matrix}2x=0\Rightarrow x=0\\x-19=0\Rightarrow x=19\end{matrix}\right.\)
Không chắc lắm :)
ở trên đúng r, nhưng sai từ chỗ 2x^2 -19x=0, đáng lẽ phải là 10x^2 -19x =0 mới đúng
\(\Leftrightarrow x^4-5x^3+5x^3-25x^3-5x^3+25x+6x-30=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^3+5x^2-5x+6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\cdot\left(x^3+6x^2-x^2-6x+x+6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+6\right)\left(x^2-x+1\right)=0\)
hay \(x\in\left\{5;-6\right\}\)
\(2\left(x^2+8x+16\right)-x^2+4=0\)
\(\Leftrightarrow2x^2+16x+32-x^2+4=0\)
\(\Leftrightarrow x^2+16x+36=0\)
\(\Leftrightarrow x^2+16x+64=28\)
\(\Leftrightarrow\left(x+8\right)^2=28\)
\(\Leftrightarrow\orbr{\begin{cases}x_1=\sqrt{28}-8\\x_2=-\sqrt{28}-8\end{cases}}\)
\(2\left(x^2+8x+16\right)-x^2+4=0\)
\(2x^2+16x+32-x^2+4=0\)
\(x^2+16x+36=0\)
\(x^2+16x+64=28\)
\(\left(x+8\right)^2=28\)
bình phương thì chia lm 2 trường hợp
lm tiếp phần sau