K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

a, Ta có: \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\)<0

Vì (2a+1)2 >=0;(b+3)^4>=0;(5c-6)2 >=0

\(\Rightarrow\)Không tìm được a,b,c

11 tháng 8 2018

a) Vì \(\left(2a+1\right)^2\ge0\left(\forall a\right)\)

        \(\left(b+3\right)^4\ge0\left(\forall b\right)\)

        \(\left(5c-6\right)^2\ge0\left(\forall c\right)\)

\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^6\ge0\)

Mà ở đây, đề bài bảo: \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^6\le0\)

=> Vô lí

=> Phương trình vô nghiệm

b;c Tương tự

ghi đề lại nha bạn. Không hiểu đề thì ai mà giúp bạn giải đươc

CẢM ƠN

21 tháng 1 2016

Mik mới học lớp 6 nên ko thể giải giúp bạn được ^-^

31 tháng 1 2016

giải dùm mk vs đi

29 tháng 7 2016

cậu bít làm câu e. g .f h.i của thầy lâm nha

29 tháng 7 2016

ai giúp mk k cho

27 tháng 6 2021

a, Ta thấy : \(\left\{{}\begin{matrix}\left(2a+1\right)^2\ge0\\\left(b+3\right)^2\ge0\\\left(5c-6\right)^2\ge0\end{matrix}\right.\)\(\forall a,b,c\in R\)

\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\ge0\forall a,b,c\in R\)

\(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\le0\)

Nên trường hợp chỉ xảy ra là : \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2=0\)

- Dấu " = " xảy ra \(\left\{{}\begin{matrix}2a+1=0\\b+3=0\\5c-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b=-3\\c=\dfrac{6}{5}\end{matrix}\right.\)

Vậy ...

b,c,d tương tự câu a nha chỉ cần thay số vào là ra ;-;

27 tháng 6 2021

ok