Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 6B = 2.4.6 + 4.6.(8-2) + 6.8.(10-4) + ... + 18.20.(22-16)
6B = 2.4.6 + 4.6.8 - 2.4.6 + 6.8.10 - 4.6.8 +...+ 18.20.22 - 16.18.20
6B = 18.20.
B = (18.20.22) : 6
B = 1320
Mấy bài kia tương tự, cần giải luôn không bạn? Nhưng hơi mất thời gian
a/
3A=1.2.3+2.3.3+3.4.3+...+98.99.3=
=1.2.3+2.3.(4-1)+3.4.(5-2)+...+98.99.(100-97)=
=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-97.98.99+98.99.100=
=98.99.100=> A=98.33.100
b
6B=1.3.6+3.5.6+5.7.6+...+99.101.6=
=1.3.(5+1)+3.5.(7-1)+5.7.(9-3)+...+99.101.(103-97)=
=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=
=1.3+99.101.103=> (3+99.101.103):6
c/
9S=1.4.9+4.7.9+7.10.9+...+2017.2020.9=
=1.4.(7+2)+4.7.(10-1)+7.10.(13-4)+...+2017.2020.(2023-2014)=
=1.2.4+1.4.7-1.4.7+4.7.10--4.7.10+7.10.13-...-2014.2017.2020+2017.2020.2023=
=1.2.4+2017.2020.2023=> S=(2.4+2017.2020.2023):9
Dạng tổng quát: tính tổng các tích có quy luật: các thừa số của các tích lập thành dãy số cách đều. các thừa số đầu tiên của số hạng liền sau cũng chính là các thừa số sau cùng của số hạng liền trước thì ta nhân tổng với số k
Số k được tính theo quy luật \(k=\left(n+1\right)xd\)
Trong đó: n: số thừa số của 1 số hạng
d: Khoảng cách giữa hai thừa số liền kề trong mỗi số hạng
Chúc em học tốt
a) \(A=2.4+4.6+6.8+...+18.20\)
\(6A=2.4.6+4.6.\left(8-2\right)+6.8.\left(10-4\right)+...+18.20.\left(22-16\right)\)
\(6A=2.4.6+4.6.8-2.4.6+6.8.10-4.6.8+...+18.20.22-16.18.20\)
\(6A=18.20.22\)
\(A=\frac{18.20.22}{6}=\frac{7920}{6}=1320\)
d/ Đặt : A = 1.2 + 2.3 + 3.4 + ......... + 99.100
=> 3A = 1.2.(3 - 0) + 2.3.(4 - 1) + ..... + 99.100.(101 - 98)
=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ..... + 99.100.101
=> 3A = 99.100.101
=> A = 99.100.101 / 3
=> A = 333300
\(A=\) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}\)
\(A=\frac{49}{50}\)
\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.50}\)
A= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
A = \(\frac{1}{1}-\frac{1}{51}=\frac{50}{51}\)
Đề bài của bạn sai ở chỗ 99.101 nha, phải là 99.100
a) A = 1.2 + 2.3 + 3.4 + ... + 99.100
=>3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 98.99.3 + 99.100.3
=>3A = 1.2(3-0) + 2.3(4-1) + 3.4(5-2) + ... + 98.99(100 - 97) + 99.100(101 - 98)
=>3A = 1.2.3 - 0.1.2. + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 98.99.100 - 97.98.99 + 99.100.101 - 98.99.100
=> 3A = 0.1.2 + 99.100.101 = 99.100.101
=> A = (99.100.101) : 3
\(\Leftrightarrow2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{47}-\frac{1}{49}\right)+4x=7.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\)\(\Leftrightarrow2.\left(1-\frac{1}{49}\right)+4x=7.\left(1-\frac{1}{99}\right)\)
\(\Leftrightarrow2.\frac{48}{49}+4x=7.\frac{98}{99}\)
\(\Leftrightarrow\frac{96}{49}+4x=\frac{686}{99}\)
\(\Leftrightarrow4x=\frac{686}{99}-\frac{96}{49}\)
\(\Leftrightarrow4x=4,970109256\)
\(\Leftrightarrow x=4,970109256:4\)
\(\Leftrightarrow x=1,242527314\)
A = 1.2. + 2.3 + 3.4 + ... + 99.100
3A = 1.2.3 + 2.3.(4-1) + ... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 2.3.1 + ... + 99.100.101 - 99.100.98
3A = 99.100.101
3A = 999900
A = 333300
\(A=1\cdot2+2\cdot3+...+151\cdot152\)
\(=1\left(1+1\right)+2\left(1+2\right)+...+151\left(1+151\right)\)
\(=\left(1+2+3+...+151\right)+\left(1^2+2^2+...+151^2\right)\)
\(=\dfrac{151\left(151+1\right)}{2}+\dfrac{151\left(151+1\right)\left(2\cdot151+1\right)}{6}\)
\(=151\cdot76+\dfrac{151\cdot152\cdot303}{6}\)
\(=151\cdot76+151\cdot7676=1170552\)
\(C=2\cdot4+4\cdot6+...+2024\cdot2026\)
\(=2\cdot2\left(1\cdot2+2\cdot3+...+1012\cdot1013\right)\)
\(=4\left[1\left(1+1\right)+2\left(1+2\right)+...+1012\left(1+1012\right)\right]\)
\(=4\left[\left(1+2+...+1012\right)+\left(1^2+2^2+...+1012^2\right)\right]\)
\(=4\left[1012\cdot\dfrac{1013}{2}+\dfrac{1012\left(1012+1\right)\left(2\cdot1012+1\right)}{6}\right]\)
\(=4\left[506\cdot1013+345990150\right]\)
\(=1386010912\)
\(M=1^2+2^2+...+2024^2\)
\(=\dfrac{2024\left(2024+1\right)\cdot\left(2\cdot2024+1\right)}{6}\)
\(=2024\cdot2025\cdot\dfrac{4049}{6}\)
=2765871900
\(N=1^3+2^3+...+100^3\)
\(=\left(1+2+3+...+100\right)^2\)
\(=\left[\dfrac{100\left(100+1\right)}{2}\right]^2\)
\(=\left[50\cdot101\right]^2=5050^2\)
\(Q=1^3+2^3+...+2024^3\)
\(=\left(1+2+3+...+2024\right)^2\)
\(=\left[\dfrac{2024\left(2024+1\right)}{2}\right]^2\)
\(=\left[1012\left(2024+1\right)\right]^2\)
\(=2049300^2\)