Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: B là số nguyên
=>n-3 thuộc {1;-1;5;-5}
=>n thuộc {4;2;8;-2}
3:
a: -72/90=-4/5
b: 25*11/22*35
\(=\dfrac{25}{35}\cdot\dfrac{11}{22}=\dfrac{5}{7}\cdot\dfrac{1}{2}=\dfrac{5}{14}\)
c: \(\dfrac{6\cdot9-2\cdot17}{63\cdot3-119}=\dfrac{54-34}{189-119}=\dfrac{20}{70}=\dfrac{2}{7}\)
A= \(\dfrac{10.11.\left(1+5.5+7.7\right)}{11.12.\left(1+5.5+7.7\right)}=\dfrac{10}{12}=\dfrac{5}{6}\)
Bài 2:
b) Gọi \(d\inƯC\left(21n+4;14n+3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(21n+4;14n+3\right)=1\)
hay \(\dfrac{21n+4}{14n+3}\) là phân số tối giản(đpcm)
Bài 1:
a) Ta có: \(A=1+2-3-4+5+6-7-8+...-299-300+301+302\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(297+298-299-300\right)+301+302\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+603\)
\(=75\cdot\left(-4\right)+603\)
\(=603-300=303\)
Bài 2:
a) Vì tổng của hai số là 601 nên trong đó sẽ có 1 số chẵn, 1 số lẻ
mà số nguyên tố chẵn duy nhất là 2
nên số lẻ còn lại là 599(thỏa ĐK)
Vậy: Hai số nguyên tố cần tìm là 2 và 599
b,Gọi ƯCLN(21n+4,14n+3)=d
21n+4⋮d ⇒42n+8⋮d
14n+3⋮d ⇒42n+9⋮d
(42n+9)-(42n+8)⋮d
1⋮d ⇒ƯCLN(21n+4,14n+3)=1
Vậy phân số 21n+4/14n+3 là phân số tối giản
d)
\(\dfrac{3^9.3^{20}.2^8}{3^{24}.243.2^6}\\ =\dfrac{3^{29}.2^6.2^2}{3^{24}.3^5.2^6}\\ =\dfrac{3^{29}.2^6.4}{3^{29}.2^6}\\ =4\)
e)
\(\dfrac{2^{15}.5^3.2^6.3^4}{8.2^{18}.81.5}\\ =\dfrac{2^{21}.5^3.3^4}{2^3.2^{18}3^4.5}\\ =\dfrac{2^{21}.5.5^2.3^4}{2^{21}.3^4.5}\\ =5^2\\ =25\)
f)
\(=\dfrac{24\left(315+561+124\right)}{\dfrac{\left(1+99\right).50}{2}-500}\\ =\dfrac{24.1000}{2500-500}\\ =12\)
\(a,\dfrac{-14.15}{21.\left(-10\right)}=\dfrac{-7.2.3.5}{7.3.\left(-2\right).5}=1\)
\(b,\dfrac{5.7-7.9}{7.2+6.7}=\dfrac{7\left(5-9\right)}{7\left(2+6\right)}=\dfrac{-4}{8}=-\dfrac{1}{2}\)
\(c,\dfrac{\left(-7\right).3+2.\left(-14\right)}{\left(-5\right).7-2.7}=\dfrac{-7.\left(3+4\right)}{7\left(-5-2\right)}\)
\(=\dfrac{\left(-7\right).7}{7.\left(-7\right)}=1\)
\(d,\dfrac{3^9.3^{20}.2^8}{3^{24}.243.2^6}=\dfrac{3^{29}.2^8}{3^{24}.3^5.2^6}=\dfrac{3^{29}.2^8}{3^{29}.2^6}=2^2=4\)
\(e,\dfrac{2^{15}.5^3.2^6.3^4}{8.2^{18}.81.5}=\dfrac{2^{21}.3^4.5^3}{2^{18}.2^3.3^4.5}=\dfrac{2^{21}.3^4.5^3}{2^{21}.3^4.5}=5^2=25\)
\(f,\dfrac{24.315+3.561.8+4.124.6}{1+3+5+...+97+99-500}\)
\(=\dfrac{24.315+24.561+24.124}{1+3+5+...+97+99-500}\)
\(=\dfrac{24\left(315+561+124\right)}{1+3+5+...+97+99-500}\)
\(=\dfrac{24.1000}{1+3+5+...+97+99-500}\) (1)
Đặt A = 1 + 3 + 5 + ... + 97 + 99
Số số hạng trong A là: (99 - 1) : 2 + 1 = 50 (số)
Tổng A bằng: (99 + 1) . 50 : 2 = 2500
Thay A = 2500 vào biểu thức (1), ta được:
\(\dfrac{24.1000}{2500-500}=\dfrac{24.1000}{2.1000}=12\)
a: 27/-180=-27/180=-3/20=-21/140
-6/-35=6/35=24/120
-3/-28=3/28=15/140
b: \(\dfrac{3\cdot4+3\cdot7}{6\cdot5+9}=\dfrac{3\left(4+7\right)}{30+9}=\dfrac{11}{13}=\dfrac{2849}{13\cdot259}\)
\(\dfrac{6\cdot9-2\cdot17}{63\cdot6-119}=\dfrac{54-34}{259}=\dfrac{20}{259}=\dfrac{260}{259\cdot13}\)
Bài 1:
a) \(a=2\cdot3\cdot5\cdot43\)
\(b=7200=2^5\cdot3^2\cdot5^2\)
\(c-4680=2^3\cdot3^2\cdot5\cdot13\)
b) \(\dfrac{8440}{5910}=\dfrac{8440:10}{5910:10}=\dfrac{844}{591}\)
\(\dfrac{1245}{3450}=\dfrac{1245:15}{3450:15}=\dfrac{83}{230}\)
Bài 2:
a) Ước nguyên tố của 140 là:
\(ƯNT\left(140\right)=\left\{2;5;7\right\}\)
Ước nguyên tố của 138 là:
\(ƯNT\left(138\right)=\left\{3;23;2\right\}\)
b) \(A=\dfrac{2^{10}+4^6}{8^4}\)
\(A=\dfrac{2^{10}+2^{12}}{2^{12}}\)
\(A=\dfrac{2^{10}\cdot\left(1+2^2\right)}{2^{12}}\)
\(A=\dfrac{1+4}{2^2}\)
\(A=\dfrac{5}{4}\)
\(B=\dfrac{6^{10}+15\cdot2^{10}\cdot3^9}{12\cdot8^3\cdot27^3}\)
\(B=\dfrac{2^{10}\cdot3^{10}+5\cdot2^{10}\cdot3^{10}}{2^{11}\cdot3^{10}}\)
\(B=\dfrac{2^{10}\cdot3^{10}\cdot\left(1+5\right)}{2^{11}\cdot3^{10}}\)
\(B=\dfrac{1+5}{2}\)
\(B=3\)