Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: chia 10n cho 5n-3 như bình thường ta được dư là 6
Để A có giá trị nguyên thì \(10n⋮5n-3\) Do đó 6 phai chia hết cho 3n+2
<= >5n-3\(\in u\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\\\)
Lập bảng
5n-3= | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
n= | -0.6 | 0 | 0.2 | 0.4 | 0.8 | 1 | 1.2 | 1.8 |
Dưới đây là lời giải chi tiết cho hai bài toán bạn hỏi:
Bài 1: Tìm số nguyên \(n\) để biểu thức
\(\frac{2 n - 1}{3 n + 2}\)rút gọn được.
Phân tích:
Một phân số có thể rút gọn được khi tử số và mẫu số có ước chung lớn hơn 1.
Vậy ta cần tìm số nguyên \(n\) sao cho:
\(gcd \left(\right. 2 n - 1 , 3 n + 2 \left.\right) > 1\)Giải:
Gọi \(d = gcd \left(\right. 2 n - 1 , 3 n + 2 \left.\right)\), \(d > 1\).
Vì \(d \mid \left(\right. 2 n - 1 \left.\right)\) và \(d \mid \left(\right. 3 n + 2 \left.\right)\), nên \(d\) cũng chia được các tổ hợp tuyến tính của chúng:
\(d \mid \left(\right. 3 \times \left(\right. 2 n - 1 \left.\right) \left.\right) = 6 n - 3\) \(d \mid \left(\right. 2 \times \left(\right. 3 n + 2 \left.\right) \left.\right) = 6 n + 4\)Do đó,
\(d \mid \left(\right. \left(\right. 6 n + 4 \left.\right) - \left(\right. 6 n - 3 \left.\right) \left.\right) = 7\)Vậy \(d \mid 7\).
Vì \(d > 1\), nên \(d = 7\).
Điều kiện:
\(7 \mid \left(\right. 2 n - 1 \left.\right) \text{v} \overset{ˋ}{\text{a}} 7 \mid \left(\right. 3 n + 2 \left.\right)\)Tức là:
\(2 n - 1 \equiv 0 \left(\right. m o d 7 \left.\right) \Rightarrow 2 n \equiv 1 \left(\right. m o d 7 \left.\right)\) \(3 n + 2 \equiv 0 \left(\right. m o d 7 \left.\right) \Rightarrow 3 n \equiv - 2 \equiv 5 \left(\right. m o d 7 \left.\right)\)Giải từng phương trình modulo 7:
- \(2 n \equiv 1 \left(\right. m o d 7 \left.\right)\)
Nhân hai vế với nghịch đảo của 2 modulo 7. Vì \(2 \times 4 = 8 \equiv 1 \left(\right. m o d 7 \left.\right)\), nên nghịch đảo của 2 là 4.
\(n \equiv 4 \times 1 = 4 \left(\right. m o d 7 \left.\right)\)- \(3 n \equiv 5 \left(\right. m o d 7 \left.\right)\)
Nghịch đảo của 3 modulo 7 là 5 vì \(3 \times 5 = 15 \equiv 1 \left(\right. m o d 7 \left.\right)\)
\(n \equiv 5 \times 5 = 25 \equiv 4 \left(\right. m o d 7 \left.\right)\)Kết luận:
Cả hai điều kiện đều yêu cầu:
\(n \equiv 4 \left(\right. m o d 7 \left.\right)\)Vậy các số nguyên \(n\) thỏa mãn là:
\(n = 7 k + 4 , k \in \mathbb{Z}\)Bài 2: Cho
\(A = \frac{10 n}{5 n - 3} , n \in \mathbb{Z}\)a) Tìm \(n\) để \(A\) có giá trị nguyên
Điều kiện:
- Mẫu số khác 0:
- \(A\) là số nguyên \(\Rightarrow 5 n - 3 \mid 10 n\)
Phân tích:
Giả sử \(d = 5 n - 3\), ta cần \(d \mid 10 n\).
Ta có:
\(d = 5 n - 3 \Rightarrow 5 n = d + 3\)Thay vào biểu thức \(10 n = 2 \times 5 n = 2 \left(\right. d + 3 \left.\right) = 2 d + 6\).
Vì \(d \mid 10 n\), tức là \(d \mid 2 d + 6\).
Mà \(d \mid 2 d\) nên \(d \mid 6\).
Tóm lại:
\(5 n - 3 = d \mid 6\)Vậy \(5 n - 3\) là ước của 6.
Các ước của 6 là: \(\pm 1 , \pm 2 , \pm 3 , \pm 6\).
Tìm \(n\) ứng với từng giá trị:
- \(5 n - 3 = 1 \Rightarrow 5 n = 4 \Rightarrow n = \frac{4}{5}\) (không nguyên)
- \(5 n - 3 = - 1 \Rightarrow 5 n = 2 \Rightarrow n = \frac{2}{5}\) (không nguyên)
- \(5 n - 3 = 2 \Rightarrow 5 n = 5 \Rightarrow n = 1\) (nguyên)
- \(5 n - 3 = - 2 \Rightarrow 5 n = 1 \Rightarrow n = \frac{1}{5}\) (không nguyên)
- \(5 n - 3 = 3 \Rightarrow 5 n = 6 \Rightarrow n = \frac{6}{5}\) (không nguyên)
- \(5 n - 3 = - 3 \Rightarrow 5 n = 0 \Rightarrow n = 0\) (nguyên)
- \(5 n - 3 = 6 \Rightarrow 5 n = 9 \Rightarrow n = \frac{9}{5}\) (không nguyên)
- \(5 n - 3 = - 6 \Rightarrow 5 n = - 3 \Rightarrow n = - \frac{3}{5}\) (không nguyên)
Vậy các giá trị nguyên \(n\) thỏa mãn là:
\(n = 0 , n = 1\)Kiểm tra giá trị \(A\):
- Với \(n = 0\):
- Với \(n = 1\):
b) Tìm giá trị lớn nhất của \(A\)
Ta xét hàm số:
\(A \left(\right. n \left.\right) = \frac{10 n}{5 n - 3}\)với \(n \in \mathbb{Z}\), \(n \neq \frac{3}{5}\).
Phân tích:
- Khi \(n \rightarrow + \infty\), \(A \left(\right. n \left.\right) \rightarrow \frac{10 n}{5 n} = 2\)
- Khi \(n \rightarrow - \infty\), \(A \left(\right. n \left.\right) \rightarrow 2\)
Tính giá trị \(A \left(\right. n \left.\right)\) tại một số \(n\) nguyên:
\(n\)nnn | \(A \left(\right. n \left.\right) = \frac{10 n}{5 n - 3}\)A(n)=10n5n−3A(n) = \frac{10n}{5n - 3}A(n)=5n−310n | Giá trị |
---|---|---|
0 | 0 | 0 |
1 | \(\frac{10}{2} = 5\)102=5\frac{10}{2} = 5210=5 | 5 |
2 | \(\frac{20}{7} \approx 2.86\)207≈2.86\frac{20}{7} \approx 2.86720≈2.86 | 2.86 |
3 | \(\frac{30}{12} = 2.5\)3012=2.5\frac{30}{12} = 2.51230=2.5 | 2.5 |
4 | \(\frac{40}{17} \approx 2.35\)4017≈2.35\frac{40}{17} \approx 2.351740≈2.35 | 2.35 |
5 | \(\frac{50}{22} \approx 2.27\)5022≈2.27\frac{50}{22} \approx 2.272250≈2.27 | 2.27 |
-1 | \(\frac{- 10}{- 8} = 1.25\)−10−8=1.25\frac{-10}{-8} = 1.25−8−10=1.25 | 1.25 |
-2 | \(\frac{- 20}{- 13} \approx 1.54\)−20−13≈1.54\frac{-20}{-13} \approx 1.54−13−20≈1.54 | 1.54 |
-3 | \(\frac{- 30}{- 18} = 1.67\)−30−18=1.67\frac{-30}{-18} = 1.67−18−30=1.67 | 1.67 |
Nhận xét:
- Giá trị \(A \left(\right. n \left.\right)\) lớn nhất trong các giá trị nguyên đã thử là tại \(n = 1\) với \(A = 5\).
- Các giá trị khác đều gần 2 hoặc nhỏ hơn 5.
- Vì hàm số tiệm cận 2 khi \(n \rightarrow \pm \infty\), nên giá trị lớn nhất của \(A\) trên các số nguyên là 5 tại \(n = 1\).
Tóm tắt đáp án:
- Bài 1: Các số nguyên \(n\) để phân số rút gọn được là \(n = 7 k + 4\), với \(k \in \mathbb{Z}\).
- Bài 2:
- a) \(A\) nguyên khi \(n = 0\) hoặc \(n = 1\).
- b) Giá trị lớn nhất của \(A\) là \(5\), đạt được tại \(n = 1\).
Nếu bạn cần giải thích thêm hoặc bài toán khác, cứ hỏi nhé!

Bài 2:
a) \(A=\frac{10n}{5n-3}=\frac{2\left(5n-3\right)+6}{5n-3}=2+\frac{6}{5n-3}\)
Vậy để A nguyên thì \(5n-3\inƯ\left(6\right)\)
Mà Ư(6)={1;-1;2;-2;3;-3;6;-6}
=>5n-3={1;-1;2;-2;3;-3;6;-6}
Ta có bảng sau:
5n-3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | \(\frac{4}{5}\) | \(\frac{2}{5}\) | 1 | \(\frac{1}{5}\) | \(\frac{6}{5}\) | 0 | \(\frac{9}{5}\) | -\(\frac{3}{5}\) |
Vậy \(x=\left\{\frac{4}{5};\frac{2}{5};1;\frac{1}{5};\frac{6}{5};0;\frac{9}{5};-\frac{3}{5}\right\}\) thì A nguyên

1) Để phân số \(\frac{14n+3}{21n+5}\) là PSTG thì
ƯC(14n+3, 21n+5)={-1,1}
Gọi d là UC của 14n+3 và 21n+5
⇒14n+3⋮d
21n+5⋮d
⇒3(14n+3)⋮d
2(21n+5)⋮d
⇒42n+9⋮d
42n+10⋮d
⇒42n+9-(42n+10)⋮d
⇒42n+9-42n-10⋮d
⇒-1⋮d
⇒d={1, -1)
⇒ƯC(14n+3, 21n+5)={-1,1}
Vậy phân số................
2)\(\text({\frac{1}{4}.x+\frac{3}{4}.x})^{2}\)=\(\frac{5}{6}\)
⇒\(\text((\frac{1}{4}+\frac{3}{4}).x)^2=\frac{5}{6}\)
⇒\(\text{(1x)}^2\)=\(\frac{5}{6}\)
⇒x=....(mình ko tính dc)
Vậy x∈ϕ
3) A=\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{899}{900}\)
=\(\frac{3.8.15...899}{4.9.16...900}\)
=\(\frac{1.3.2.4.3.5...29.31}{2.2.3.3.4.4...30.30}\)
=\(\frac{1.2.3...29}{2.3.4...30}.\frac{3.4.5....31}{2.3.4...30}\)
=\(\frac{1}{30}.\frac{31}{2}\)
=\(\frac{31}{60}\)
gọi UCLN ( 14n+ 3 ; 21n +5 ) là d
=> 14n+ 3⋮d và 21n +5⋮d
=> 42n + 9⋮d và 42n + 10⋮d
=> 42n + 10 - (42n + 9) ⋮ d
=> 42n + 10 - 42n - 9⋮ d
=> 1⋮ d
=> p/s ...là phân số tối giản

Bài 1:
Vì n nguyên nên để A nhận giá trị nguyên thì :
\(n+3⋮n-5\\ \Leftrightarrow n-5+8⋮n-5\\ \Rightarrow8⋮n-5\\ \Rightarrow n-5\in\left\{-1;1;-2;2;-4;4;-8;8\right\}\\ \Rightarrow n\in\left\{4;6;3;7;1;9;-3;13\right\}\\ Vậy...\)
Bài 3;
Gọi \(UCLN_{\left(5n+1,20n+3\right)}=d\)
\(\Rightarrow\left\{{}\begin{matrix}5n+1⋮d\\20n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}20n+4⋮d\\20n+3⋮d\end{matrix}\right.\\ \Rightarrow\left(20n+4\right)-\left(20n+3\right)⋮d\\ \Leftrightarrow1⋮d\\ \Rightarrow d\in\left\{-1;1\right\}\)
\(UCLN_{\left(5n+1,20n+3\right)}=1\\ \Rightarrow Phânsốđãchotốigiản\\ \RightarrowĐpcm\)
\(1.\)Để A nguyên thì n+3⋮n−5 (1)
Vì n-5⋮n-5 (2)
Từ (1) và (2) ⇒ n+3-n+5⋮n-5
⇒ 8⋮n-5
⇒ n-5 ∈ Ư(8) = \(\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
⇒ n∈\(\left\{6;4;7;3;9;1;13;-3\right\}\)
Vậy n∈\(\left\{6;4;7;3;9;1;13;-3\right\}\)thì A là số nguyên
Bài 2:
a: Để E là số nguyên thì \(3n+5⋮n+7\)
\(\Leftrightarrow3n+21-16⋮n+7\)
\(\Leftrightarrow n+7\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(n\in\left\{-6;-8;-5;-9;-3;-11;1;-15;9;-23\right\}\)
b: Để F là số nguyên thì \(2n+9⋮n-5\)
\(\Leftrightarrow2n-10+19⋮n-5\)
\(\Leftrightarrow n-5\in\left\{1;-1;19;-19\right\}\)
hay \(n\in\left\{6;4;29;-14\right\}\)