\(x^2-6x+10\)

2) \(x^2...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2020

Đây mình trả lời với x là số thực.

1) x^2 - 6x + 10 = (x^2 - 6x + 9) + 1 = (x - 3)^2 + 1. >= 0 + 1 = 1. (Số chính phương luôn >= 0 với mọi x).

Vậy GTNN của biểu thức trên là 1. Dấu "=" xảy ra <=> x = 3.

2) x^2 - 8x + 19 = (x^2 - 8x + 16) + 3 = (x - 4)^2 + 3 >= 0 + 3 = 3.

Vậy GTNN của biểu thức trên là 1. Dấu "=" xảy ra <=> x = 4.

3) 3x^2 - 6x + 5 = (3x^2 - 6x + 3) + 2 = 3.(x - 1)^2 + 2 >= 0 + 2 = 2.

Vậy GTNN của biểu thức trên là 2. Dấu "=" xảy ra <=> x = 1.

4) x^2 + x + 1 = (x^2 + x + 1/4) + 3/4 = (x + 1/2)^2 + 3/4 >= 0 + 3/4 = 3/4.

Vậy GTNN của biểu thức trên là 3/4. Dấu "=" xảy ra <=> x = -1/2.

5) x^2 + 10x + 27 = (x^2 + 10x + 25) + 2 = (x + 5)^2 + 2 >= 0 + 2 = 2.

Vậy GTNN của biểu thức trên là 2. Dấu "=" xảy ra <=> x = -5.

6) 4x^2 + 4x + 2 = (4x^2 + 4x + 1) + 1 = (2x + 1)^2 + 1 >= 0 + 1 = 1.

Vậy GTNN của biểu thức trên là 1. Dấu "=" xảy ra <=> x = -1/2.

7) 16x^2 + 16x + 25 = (16x^2 + 16x + 4) + 21 = 4.(2x + 1)^2 + 21 >= 0 + 21 = 21.

Vậy GTNN của biểu thức trên là 21. Dấu "=" xảy ra <=> x = -1/2.

8) 9x^2 - 12x + 5 = (9x^2 - 12x + 4) + 1 = (3x - 2)^2 + 1 >= 0 + 1 = 1.

Vậy GTNN của biểu thức trên là 1. Dấu "=" xảy ra <=> x = 2/3.

9) 49x^2 - 28x + 7 = (49x^2 - 28x + 4) + 3 = (7x - 2)^2 + 3 >= 0 + 3 = 3.

Vậy GTNN của biểu thức là 3. Dấu "=" xảy ra <=> x = 2/7.

10) 30 - 6x + x^2 = (x^2 - 6x + 9) + 21 = (x - 3)^2 + 21 >= 0 + 21 = 21.

Vậy GTNN của biểu thức là 21. Dấu "=" xảy ra <=> x = 3.

11) (1/4).x^2 + x + 3 = ((1/4).x + x + 1) + 2 = ((1/2).x + 1)^2 + 2 >= 0 + 2 = 2.

Vậy GTNN của biểu thức là 2. Dấu "=" xảy ra <=> x = -2.

Lần sau nếu như đề bài yêu cầu tìm GTNN của 1 biểu thức thì bạn tìm xem biểu thức đó >= bao nhiêu nhé, và giá trị đó sẽ là GTNN của biểu thức đã cho. Còn nếu như đề bài yêu cầu tìm GTLN của 1 biểu thức thì bạn làm ngược lại.

16 tháng 8 2020

Lần sau đăng 3 - 4 ý/câu hỏi thôi :V 

1/ -x2 + 4x - 5 = -( x2 - 4x + 4 ) - 1 = -( x - 2 )2 - 1 

\(-\left(x-2\right)^2\le0\forall x\Rightarrow-\left(x-2\right)^2-1\le-1\)

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> GTLN = -1 <=> x = 2

2/ -x2 + 2x - 7 = -( x2 - 2x + 1 ) - 6 = -( x - 1 )2 - 6 

\(-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-6\le-6\)

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> GTLN = -6 <=> x = 1

3/ -x2 - 6x - 10 = -( x2 + 6x + 9 ) - 1 = -( x + 3 )2 - 1

\(-\left(x+3\right)^2\le0\forall x\Rightarrow-\left(x+3\right)^2-1\le-1\)

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> GTLN = -1 <=> x = -3

4/ -x2 + 2x - 2 = -( x2 - 2x + 1 ) - 1 = -( x - 1 )2 - 1

\(-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-1\le-1\)

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> GTLN = -1 <=> x = 1

5/ -9x2 + 24x - 18 = -9( x2 - 8/3x + 16/9 ) - 2 = -9( x - 4/3 )2 - 2

\(-9\left(x-\frac{4}{3}\right)^2\le0\forall x\Rightarrow-9\left(x-\frac{4}{3}\right)^2-2\le-2\)

Đẳng thức xảy ra <=> x - 4/3 = 0 => x = 4/3

=> GTLN = -2 <=> x = 4/3

6/ -4x2 + 4x - 7 = -4( x2 - x + 1/4 ) - 6 = -4( x - 1/2 )2 - 6

\(-4\left(x-\frac{1}{2}\right)^2\le0\forall x\Rightarrow-4\left(x-\frac{1}{2}\right)^2-6\le-6\)

Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2

=> GTLN = -6 <=> x = 1/2

7/ -16x2 + 8x - 2 = -16( x2 - 1/2x + 1/16 ) - 1 = -16( x - 1/4 )2 - 1

\(-16\left(x-\frac{1}{4}\right)^2\le0\forall x\Rightarrow-16\left(x-\frac{1}{4}\right)^2-1\le-1\)

Đẳng thức xảy ra <=> x - 1/4 = 0 => x = 1/4

=> GTLN = -1 <=> x = 1/4

16 tháng 8 2020

8/ -5x2 + 20x - 49 = -5( x2 - 4x + 4 ) - 29 = -5( x - 2 )2 - 29

\(-5\left(x-2\right)^2\le0\forall x\Rightarrow-5\left(x-2\right)^2-29\le-29\)

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> GTLN = -29 <=> x = 2

9/ -x2 + x - 1 = -( x2 - x + 1/4 ) - 3/4 = -( x - 1/2 )2 - 3/4

\(-\left(x-\frac{1}{2}\right)^2\le0\forall x\Rightarrow-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\)

Đẳng thức xảy ra <=> x - 1/2 = 0 => x = 1/2

=> GTLN = -3/4 <=> x = 1/2

10/ -x2 + 3x - 3 = -( x2 - 3x + 9/4 ) - 3/4 = -( x - 3/2 )2 - 3/4

\(-\left(x-\frac{3}{2}\right)^2\le0\forall x\Rightarrow-\left(x-\frac{3}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\)

Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2

=> GTLN = -3/4 <=> x = 3/2

11/ -x2 + 5x - 8 = -( x2 - 5x + 25/4 ) - 7/4 = -( x - 5/2 )2 - 7/4

\(-\left(x-\frac{5}{2}\right)^2\le0\forall x\Rightarrow-\left(x-\frac{5}{2}\right)^2-\frac{7}{4}\le-\frac{7}{4}\)

Đẳng thức xảy ra <=> x - 5/2 = 0 => x = 5/2

=> GTLN = -7/4 <=> x = 5/2

12/ -9x2 + 12x - 5 = -9( x2 - 4/3x + 4/9 ) - 1 = -9( x - 2/3 )2 - 1

\(-9\left(x-\frac{2}{3}\right)^2\le0\forall x\Rightarrow-9\left(x-\frac{2}{3}\right)^2-1\le-1\)

Đẳng thức xảy ra <=> x - 2/3 = 0 => x = 2/3

=> GTLN = -1 <=> x = 2/3

13/ -x2 - 8x - 19 = -( x2 + 8x + 16 ) - 3 = -( x + 4 )2 - 3

\(-\left(x+4\right)^2\le0\forall x\Rightarrow-\left(x+4\right)^2-3\le-3\)

Đẳng thức xảy ra <=> x + 4 = 0 => x = -4

=> GTLN = -3 <=> x = -4

14/ -x2 + 2/3x - 1 = -( x2 - 2/3x + 1/9 ) - 8/9 = -( x - 1/3 )2 - 8/9

\(-\left(x-\frac{1}{3}\right)^2\le0\forall x\Rightarrow-\left(x-\frac{1}{3}\right)^2-\frac{8}{9}\le-\frac{8}{9}\)

Đẳng thức xảy ra <=> x - 1/3 = 0 => x = 1/3

=> GTLN = -8/9 <=> x = 1/3

Mệt :)

29 tháng 6 2017

1) \(4x^2+4x+1=\left(2x+1\right)^2\)

2)\(9x^2-24xy+16y^2=\left(3x-4y\right)^2\)

3)\(-x^2+10x-25=-\left(x-5\right)^2\)

4)\(1+12x+36x^2=\left(1+6x\right)^2\)

5) \(\dfrac{x^2}{4}+2xy+4y^2=\left(\dfrac{x}{2}+2y\right)^2\)

6) \(4x^2+4xy+y^2=\left(2x+y\right)^2\)

29 tháng 6 2017

bài toán iêu cầu j z ??? bn

21 tháng 7 2018

a, (x+2)^2

b, (x-3)^2

c, (2x+3)^2

d, (3x-1)^2

e, (x+5)^2

g, (4x-1)^2

21 tháng 7 2018

a) x2 + 4x + 4 = ( x + 2 )2

b) x2 - 6x + 9 = (x-3)2

c) 4x2 + 12x +  9 = (2x)2 + 2.2x.3 + 3^2 = (2x + 3)2

d) 9x2 - 6x + 1 = (3x)2 - 2.3x.1 + 1^2 = (3x-1)2

e) x2 + 25 +10x = x2 + 2.x.5 + 52 = (x+5)2

g) 16x+1 - 8x = (4x)2 - 2.4x.1 + 1^2 = (4x-1)2

1) \(\frac{3x-1}{4}+\frac{2x-3}{3}=\frac{x-1}{2}\) Mc : 12 \(\Leftrightarrow\) \(\frac{3.\left(3x-1\right)}{12}+\frac{4.\left(2x-3\right)}{12}=\frac{6.\left(x-1\right)}{12}\) \(\Leftrightarrow\) 9x - 3 + 8x - 12 = 6x - 6 \(\Leftrightarrow\) 9x + 8x - 6x = 3 + 12 - 6 \(\Leftrightarrow\) 11x = 9 \(\Leftrightarrow\) x = 0,8 Vậy S = {0,8} 2) \(\frac{x+1}{2}-\frac{x+3}{12}=3-\frac{5-3x}{3}\) Mc : 12 \(\Leftrightarrow\)...
Đọc tiếp

1) \(\frac{3x-1}{4}+\frac{2x-3}{3}=\frac{x-1}{2}\) Mc : 12

\(\Leftrightarrow\) \(\frac{3.\left(3x-1\right)}{12}+\frac{4.\left(2x-3\right)}{12}=\frac{6.\left(x-1\right)}{12}\)

\(\Leftrightarrow\) 9x - 3 + 8x - 12 = 6x - 6

\(\Leftrightarrow\) 9x + 8x - 6x = 3 + 12 - 6

\(\Leftrightarrow\) 11x = 9

\(\Leftrightarrow\) x = 0,8

Vậy S = {0,8}

2) \(\frac{x+1}{2}-\frac{x+3}{12}=3-\frac{5-3x}{3}\) Mc : 12

\(\Leftrightarrow\) \(\frac{6.\left(x+1\right)}{12}-\frac{x+3}{12}=\frac{12.3}{12}-\frac{4.\left(5-3x\right)}{12}\)

\(\Leftrightarrow\) 6x + 6 - x + 3 = 36 - 20 - 12x

\(\Leftrightarrow\) 6x - x + 12x = -6 - 3 + 36 - 20

\(\Leftrightarrow\) 17x = 7

\(\Leftrightarrow\) x = \(\frac{7}{17}\)

Vậy S = {\(\frac{7}{17}\)}

3) x - \(\frac{x+1}{3}\) = \(\frac{2x-1}{5}\) Mc : 15

\(\Leftrightarrow\) \(\frac{15.x}{15}-\frac{5.\left(x+1\right)}{15}=\frac{3.\left(2x-1\right)}{15}\)

\(\Leftrightarrow\) 15x - 5x - 5 = 6x - 3

\(\Leftrightarrow\) 15x - 5x - 6x = 5 - 3

\(\Leftrightarrow\) 4x = 2

\(\Leftrightarrow\) x = \(\frac{2}{4}=\frac{1}{2}\)

Vậy S = {\(\frac{1}{2}\)}

4) \(\frac{2x+7}{3}-\frac{x-2}{4}=-2\) Mc : 12

\(\Leftrightarrow\) \(\frac{4.\left(2x+7\right)}{12}-\frac{3.\left(x-2\right)}{12}=\frac{12.\left(-2\right)}{12}\)

\(\Leftrightarrow\) 8x + 28 -3x + 6 = -24

\(\Leftrightarrow\) 8x - 3x = -28 - 6 -24

\(\Leftrightarrow\) 5x = -58

\(\Leftrightarrow\) x = -11,6

Vậy S = {-11,6}

5) \(\frac{2x-3}{4}-\frac{4x-5}{3}=\frac{5-x}{6}\) Mc : 12

\(\Leftrightarrow\) \(\frac{3.\left(2x-3\right)}{12}-\frac{4.\left(4x-5\right)}{12}=\frac{2.\left(5-x\right)}{12}\)

\(\Leftrightarrow\) 6x - 9 - 16x + 20 = 10 - 2x

\(\Leftrightarrow\) 6x - 16x + 2x = 9 - 20 + 10

\(\Leftrightarrow\) -8x = -1

\(\Leftrightarrow\) x = \(\frac{1}{8}\)

Vậy S = {\(\frac{1}{8}\)}

6) \(\frac{12x+1}{4}=\frac{9x+1}{3}-\frac{3-5x}{12}\) Mc : 12

\(\Leftrightarrow\frac{3.\left(12x+1\right)}{12}=\frac{4.\left(9x+1\right)}{12}-\frac{3-5x}{12}\)

\(\Leftrightarrow\) 36x + 3 = 36x + 4 - 3 + 5x

\(\Leftrightarrow\) 36x - 36x - 5x = -3 + 4 - 3

\(\Leftrightarrow\) -5x = -2

\(\Leftrightarrow x=\frac{2}{5}\)

7) \(\frac{x+6}{4}\) - \(\frac{x-2}{6}-\frac{x+1}{3}=0\) Mc : 12

\(\Leftrightarrow\) \(\frac{3.\left(x+6\right)}{12}-\frac{2.\left(x-2\right)}{12}-\frac{4.\left(x+1\right)}{12}=0\)

\(\Leftrightarrow\) 3x + 18 - 2x + 4 - 4x - 4 = 0

\(\Leftrightarrow\) 3x - 2x - 4x = -18 - 4 + 4

\(\Leftrightarrow\) -3x = -18

\(\Leftrightarrow\) x = 6

Vậy S = {6}

8) x\(^2\) - x - 6 = 0

\(\Leftrightarrow\) x\(^2\) + 2x - 3x - 6 = 0

\(\Leftrightarrow\) x.(x + 2) - 3.(x + 2) = 0

\(\Leftrightarrow\) (x - 3).(x + 2) = 0

\(\Leftrightarrow\) x - 3 = 0 hoặc x + 2 = 0

\(\Leftrightarrow\) x = 3 hoặc x = -2

Vậy S = {3; -2}

0
27 tháng 7 2018

a) \(A=x^2-2x-6\)

\(A=\left(x^2-2x+1\right)-7\)

\(A=\left(x-1\right)^2-7\)

\(\left(x-1\right)^2\) luôn \(\ge\)\(0\) => GTNN của biểu thức là -7 với \(\left(x-1\right)^2=0\) tức x=1

a: \(=x^2-2x+1-7=\left(x-1\right)^2-7>=-7\)

Dấu '=' xảy ra khi x=1

b: \(=4x^2-4x+1+6=\left(2x-1\right)^2+6>=6\)

Dấu '=' xảy ra khi x=1/2

c: \(=9x^2-6x+1-1=\left(3x-1\right)^2-1>=-1\)

Dấu '=' xảy ra khi x=1/3

d: \(=x^2+12x+36-36=\left(x+6\right)^2-36>=-36\)

Dấu '=' xảy ra khi x=-6

e: \(=x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}>=-\dfrac{9}{4}\)

Dấu '=' xảy ra khi x=3/2

21 tháng 4 2020

yêu cầu đề bài là gì thế cậu ?

22 tháng 4 2020

Phân tích đa thức thành nhân tử

NV
3 tháng 3 2019

a/ ĐKXĐ: \(x\ne2;3\)

\(\dfrac{x+3}{x-2}+\dfrac{5}{\left(x-2\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\dfrac{\left(x+3\right)\left(x-3\right)+5}{\left(x-2\right)\left(x-3\right)}=0\)

\(\Leftrightarrow x^2-9+5=0\Leftrightarrow x^2=4\Rightarrow\left[{}\begin{matrix}x=-2\\x=2\left(l\right)\end{matrix}\right.\)

b/ ĐKXĐ: \(x\ne\pm\dfrac{3}{4}\)

\(\dfrac{12x^2+30x-21}{\left(4x-3\right)\left(4x+3\right)}+\dfrac{3x-7}{4x-3}-\dfrac{6x+5}{4x+3}=0\)

\(\Leftrightarrow12x^2+30x-21+\left(3x-7\right)\left(4x+3\right)-\left(6x+5\right)\left(4x-3\right)=0\)

\(\Leftrightarrow9x-27=0\Rightarrow x=3\)

c/ ĐKXĐ: \(x\ne-1;2\)

\(\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}-\dfrac{4}{x+1}+\dfrac{2}{x-2}=0\)

\(\Leftrightarrow x+3-4\left(x-2\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow-x+13=0\)

\(\Rightarrow x=13\)

3 tháng 3 2019

Spam tick chào mừng tháng 3 em ạ :))

AH
Akai Haruma
Giáo viên
2 tháng 3 2020

Lời giải:

a) $(x+3)^2-(x-3)^2=6x+18$

$\Leftrightarrow 12x=6x+18\Leftrightarrow 6x=18\Rightarrow x=3$

b) ĐK:$x\neq 2; x\neq 3$

PT $\Rightarrow x+3=\frac{5}{3-x}$

$\Rightarrow (x+3)(3-x)=5$

$\Rightarrow 9-x^2=5$

$\Rightarrow x^2=4\Rightarrow x=\pm 2$. Kết hợp với ĐKXĐ suy ra $x=-2$

c) ĐKXĐ: $x\neq \frac{\pm 3}{4}$

PT $\Leftrightarrow \frac{12x^2+30x-21}{(4x-3)(4x+3)}-\frac{(3x-7)(3x+4)}{(4x-3)(4x+3)}=\frac{(6x+5)(4x-3)}{(4x-3)(4x+3)}$

$\Rightarrow 12x^2+30x-21-(3x-7)(4x+3)=(6x+5)(4x-3)$

$\Leftrightarrow -24x^2+47x+15=0$

$\Rightarrow x=\frac{47\pm \sqrt{3649}}{48}$

d)

ĐK: $x\neq -1; x\neq 2$

PT $\Leftrightarrow \frac{4(x-2)}{(x+1)(x-2)}-\frac{2(x+1)}{(x-2)(x+1)}=\frac{x+3}{(x+1)(x-2)}$

$\Rightarrow 4(x-2)-2(x+1)=x+3$
$\Rightarrow x=13$ (t.m)