Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có AM=CN và AB=CD (vì ABCD là hình bình hành), nên ta có thể kết luận rằng AMCN là hình bình hành.
b) Ta cần chứng minh DMBN là hình bình hành.
Vì ABCD là hình bình hành, nên ta có AB || CD và AD || BC.
Do đó, ta có góc DAB = góc DCB và góc BAD = góc BCD.
Vì AM=CN, nên ta có góc MAB = góc NCD.
Từ đó, ta có góc DMB = góc DAB + góc MAB = góc DCB + góc NCD = góc NCB.
Vì AB || CD, nên góc DMB = góc NCB.
Vì AD || BC, nên góc DMB = góc BDN.
Từ đó, ta có góc DMB = góc NCB = góc BDN.
Vậy DMBN là hình bình hành.
Bạn tích cho mik nha!
Nhớ tick cho mik nha!
Để chứng minh tứ giác AMCN là hình bình hành, ta cần chứng minh rằng AM = CN và hai đường thẳng AM và CN là song song.
Vì am < cn, ta có thể kết luận rằng M nằm giữa A và B, và N nằm giữa C và D.
Gọi P là giao điểm của hai đường thẳng AM và CN.
Ta có:
AP = AM - MP
CP = CN - NP
Vì AM = CN và am < cn, nên AM - MP < CN - NP.
Do đó, AP < CP.
Từ đó, ta có thể kết luận rằng hai đường thẳng AM và CN là song song.
Vì AM = CN và hai đường thẳng AM và CN là song song, nên tứ giác AMCN là hình bình hành.
Để chứng minh tứ giác BMDN là hình bình hành, ta cần chứng minh rằng BM = DN và hai đường thẳng BM và DN là song song.
Vì AM = CN và AM < CN, nên M nằm giữa A và B, và N nằm giữa C và D.
Gọi Q là giao điểm của hai đường thẳng BM và DN.
Ta có:
BQ = BM - MQ
DQ = DN - NQ
Vì BM = DN và BM < DN, nên BM - MQ < DN - NQ.
Do đó, BQ < DQ.
Từ đó, ta có thể kết luận rằng hai đường thẳng BM và DN là song song.
Vì BM = DN và hai đường thẳng BM và DN là song song, nên tứ giác BMDN là hình bình hành.

a. Xét tam giác HCD cóHN=DN;HM=CM
=> MN là đường trung bình của tam giác HCD => MN//DC
=> DNMC là hình thang
b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD
Mà AB=1/2CD => AB =MN
Do MN//CD và AB//CD => AB//MN
Xét tứ giác ABMN có AB//MN; AB=MN
=> ABMN là hình bình hành
c.Ta có MN//CD mà CD vg AD
=> MN vg AD
Xét tam giác ADM có DH và MN là 2 đường cao của tam giác
Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM
=> AN là đường cao của tam giác ADM
=> AN vg DM
Do ABMN là hình bình hành nên AN//BM
=> BM vg DM => BMD =90*

a: Xét ΔMAD và ΔMBE có
\(\hat{AMD}=\hat{BME}\) (hai góc đối đỉnh)
MA=MB
\(\hat{MAD}=\hat{MBE}\) (hai góc so le trong, AD//BE)
Do đó: ΔMAD=ΔMBE
=>AD=BE
Xét tứ giác ADBE có
AD//BE
AD=BE
Do đó: ADBE là hình bình hành
b: Ta có: AD=BE
AD=BC
Do đó: BE=BC
=>B là trung điểm của CE

a) BD, CE là các đường trung tuyến của \(\Delta ABC\)
\(\Rightarrow\)DA = DC; EA =EB
\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)ED // BC; ED = 1/2 BC
\(\Delta GBC\)có MG = MB; NG = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)
\(\Rightarrow\)MN // BC; MN = 1/2 BC
suy ra: MN // ED; MN = ED
\(\Rightarrow\)tứ giác MNDE là hình bình hành
c) MN = ED = 1/2 BC
\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)+ \(\frac{BC}{2}\)= BC

a: Xét ΔBHA vuông tại Hvà ΔBHK vuông tại H có
BH chung
HA=HK
Do đó: ΔBHA=ΔBHK
=>BA=BK
=>\(\hat{BAK}=\hat{BKA}\)
b: ta có; \(\hat{BAD}=\hat{KAD}=\frac12\cdot\hat{BAK}\) (AD là phân giác của góc BAK)
\(\hat{BKI}=\hat{AKI}=\frac12\cdot\hat{BKA}\) (KI là phân giác của góc BKA)
mà \(\hat{BAK}=\hat{BKA}\)
nên \(\hat{BAD}=\hat{KAD}=\hat{BKI}=\hat{AKI}\)
Xét ΔBAD và ΔBKI có
\(\hat{BAD}=\hat{BKI}\)
BA=BK
\(\hat{ABD}\) chung
Do đó: ΔBAD=ΔBKI
=>BD=BI; AD=KI
Xét ΔBAK có \(\frac{BI}{BA}=\frac{BD}{BK}\)
nên IK//AK
=>AKDI là hình thang
Hình thang AKDI có AD=KI
nên AKDI là hình thang cân

1:
ta có:ABCD là hình thoi
=>\(\widehat{BAD}=\widehat{BCD};\widehat{ABC}=\widehat{ADC}\)
Ta có: \(\widehat{BAD}+\widehat{EAH}=180^0\)(hai góc kề bù)
\(\widehat{BCD}+\widehat{FCD}=180^0\)(hai góc kề bù)
mà \(\widehat{BAD}=\widehat{BCD}\)
nên \(\widehat{EAH}=\widehat{FCD}\)
Ta có: \(\widehat{ABC}+\widehat{EBC}=180^0\)(hai góc kề bù)
\(\widehat{ADC}+\widehat{ADG}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ADC}\)
nên \(\widehat{EBC}=\widehat{ADG}\)
Ta có: \(DA+AH=DH\)
\(AB+BE=AE\)
\(BC+CF=BF\)
\(CD+DG=CG\)
mà DA=AB=BC=CD và AH=BE=CF=DG
nên DH=AE=BF=CG
Xét ΔHAE và ΔFCG có
HA=FC
\(\widehat{HAE}=\widehat{FCG}\)
AE=CG
Do đó: ΔHAE=ΔFCG
=>HE=FG
Xét ΔHDG và ΔFBE có
DH=BF
\(\widehat{HDG}=\widehat{BFE}\)
DG=BE
Do đó: ΔHDG=ΔFBE
=>HG=FE
Xét tứ giác GHEF có
GH=EF
GF=HE
Do đó: GHEF là hình bình hành
2: Gọi O là giao điểm của AC và BD
Ta có: ABCD là hình thoi
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét tứ giác AHCF có
AH//CF
AH=CF
Do đó: AHCF là hình bình hành
=>AC cắt HF tại trung điểm của mỗi đường
mà O là trung điểm của AC
nên O là trung điểmcủa HF
Ta có: EHGF là hình bình hành
=>EG cắt HF tại trung điểm của mỗi đường
mà O là trung điểm của HF
nên O là trung điểm của EG
=>Hình bình hành EHGF và hình thoi ABCD có chung tâm
1: DH=DA+AH
CG=CD+DG
BF=BC+CF
AE=AB+BE
mà DA=CD=BC=AB và AH=DG=CF=BE
nên DH=CG=BF=AE
góc ADG=180 độ-góc ADC
góc EBF=180 độ-góc ABC
mà góc ADC=góc ABC
nên góc ADG=góc EBF
góc EAB=180 độ-góc BAD
góc GCF=180 độ-góc BCD
mà góc BAD=góc BCD
nên góc EAB=góc GCF
Xét ΔHDG và ΔFBE có
HD=FB
góc HDG=góc FBE
DG=BE
Do đó: ΔHDG=ΔFBE
=>HG=FE
Xét ΔHAE và ΔFCG có
HA=FC
góc HAE=góc FCG
AE=CG
Do đó: ΔHAE=ΔFCG
=>HE=FG
Xét ΔADG và ΔCBE có
AD=CB
góc ADG=góc CBE
DG=BE
Do đó: ΔADG=ΔCBE
=>AG=CE
Xét tứ giác EHGF có
EH=FG
EF=GH
Do đó: EHGF là hình bình hành
2:
Gọi O là giao của AC và BD
ABCD là hình thoi
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét tứ giác AGCE có
AG=CE
AE=CG
Do đó: AGCE là hình bình hành
=>AC cắt GE tại trung điểm của mỗi đường
=>O là trung điểm của GE
GHEF là hình bình hành
=>GE cắt HF tại trung điểm của mỗi đường
=>O là trung điểm của HF
=>ĐPCM
3:
ABCD là hình vuông
=>góc BAD=góc ADC=90 độ
Xét ΔHAE vuông tại A và ΔGDH vuông tại D có
HA=GD
AE=DH
Do đó: ΔHAE=ΔGDH
=>HE=GH
Xét hình bình hành EHGF có HE=GH
nên EHGF là hình thoi