Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
a) Gọi ƯCLN(n + 3;n + 4) = d
=> \hept{n+3⋮dn+4⋮d⇒n+4−(n+3)⋮d⇒1⋮d⇒d=1\hept{n+3⋮dn+4⋮d⇒n+4−(n+3)⋮d⇒1⋮d⇒d=1
=> n + 3 ; n + 4 là 2 số nguyên tố cùng nhau
=> n+3n+4n+3n+4là phân số tối giản
b) Gọi ƯCLN(3n + 3 ; 9n + 8) = d
Ta có : \hept{3n+3⋮d9n+8⋮d⇒\hept⎧⎨⎩3(3n+3)⋮d9n+8⋮d⇒\hept{9n+9⋮d9n+8⋮d⇒9n+9−(9n+8)⋮d⇒1⋮d⇒d=1\hept{3n+3⋮d9n+8⋮d⇒\hept{3(3n+3)⋮d9n+8⋮d⇒\hept{9n+9⋮d9n+8⋮d⇒9n+9−(9n+8)⋮d⇒1⋮d⇒d=1
=> 3n + 3 ; 9n + 8 là 2 số nguyên tố cùng nhau
=> 3n+39n+83n+39n+8phân số tối giản
a) Gọi ƯCLN(n + 3;n + 4) = d
=> \hept{n+3⋮dn+4⋮d⇒n+4−(n+3)⋮d⇒1⋮d⇒d=1\hept{n+3⋮dn+4⋮d⇒n+4−(n+3)⋮d⇒1⋮d⇒d=1
=> n + 3 ; n + 4 là 2 số nguyên tố cùng nhau
=> n+3n+4n+3n+4là phân số tối giản
b) Gọi ƯCLN(3n + 3 ; 9n + 8) = d
Ta có : \hept{3n+3⋮d9n+8⋮d⇒\hept⎧⎨⎩3(3n+3)⋮d9n+8⋮d⇒\hept{9n+9⋮d9n+8⋮d⇒9n+9−(9n+8)⋮d⇒1⋮d⇒d=1\hept{3n+3⋮d9n+8⋮d⇒\hept{3(3n+3)⋮d9n+8⋮d⇒\hept{9n+9⋮d9n+8⋮d⇒9n+9−(9n+8)⋮d⇒1⋮d⇒d=1
=> 3n + 3 ; 9n + 8 là 2 số nguyên tố cùng nhau
=> 3n+39n+83n+39n+8phân số tối giản
a) Để \(\frac{12}{3n-1}\) là số nguyên thì \(12⋮3n-1\)
Mà \(Ư\left(12\right)\in\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Hay \(3n-1\in\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Với điều kiện \(n\inℤ\) ; Ta có bảng sau:
Vậy \(n\in\left\{-1;0;1\right\}\)
b) Để \(\frac{2n+3}{7}\)là số nguyên thì \(2n+3⋮7\)
Mà \(B\left(7\right)\in\left\{\pm7;\pm14;\pm21;\pm28;\pm35;\pm42;\pm49;\pm56;\pm63;\pm70;\pm77;...\right\}\)
Hay \(2n+3\in\left\{\pm7;\pm14;\pm21;\pm28;\pm35;\pm42;\pm49;\pm56;\pm63;\pm70;\pm77;...\right\}\)
Với điều kiện \(n\inℤ\) ; Ta có bảng sau:
Vậy \(n\in\left\{-19;-12;-5;2;9;16;...\right\}\)
c) Mik chx lm đc, sr, bn thông cảm!
giúp mk câu này nha gấp lắm