Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔEBH vuông tại E và ΔFBH vuông tại F có
BH chung
góc EBH=góc FBH
Do đó: ΔEBH=ΔFBH
=>HF=HE
b: HF=HE
mà HE<HC
nên HF<HC
Bé tự vẽ hình nhé!
a. Vì AB là trung trực của EH nên ta có: AE = AH (1)
Vì AC là trung trực của HF nên ta có: AH = AF (2)
Từ (1) và (2) ta suy ra AE = AF.
b. Vì M thuộc AB nên MB là phân giác \(\widehat{EMH}\)
=> MB là phân giác ngoài góc M của tam giác MNH
Vì N thuộc AC nên NC là phân giác \(\widehat{FNH}\)
=> NC là phân giác ngoài góc N của tam giác \(MNH\)
Do MB và NC cắt nhau tại A nên HA là phân giác trong góc H của tam giác HMN hay HA là phân giác của \(\widehat{MHN}\)
c. Ta có AH \(\perp\) BC (gt) mà HM là phân giác \(\widehat{MHN}\)
=> HB là phân giác ngoài góc H của tam giác HMN
MB là phân giác ngoài góc M của tam giác HMN (cmt)
=> NB là phân giác trong góc N của tam giác HMN
=> NB \(\perp\) AC (2 đường phân giác của hai góc kề bù thì vuông góc với nhau)
=> BN // HF (cùng vuông góc với AC)
CMTT được CM // HE
1: Xét ΔBEH vuông tại E và ΔBFH vuông tại F có
BH chung
góc EBH=góc FBH
=>ΔBEH=ΔBFH
=>HE=HF
2: ΔHEC vuông tại E
=>HE<HC
=>HF<HC