Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P/s: Bài này thì không có chắc tại cũng mới học qua
\(a)\) Hàm số trên nghịch biến
\(\Leftrightarrow3m-1< 0\)
\(\Leftrightarrow3m< 1\)
\(\Leftrightarrow m< \frac{1}{3}\)
Vậy \(m< \frac{1}{3}\)thì hàm số trên nghịch biến
\(b)\) Hàm số \(y=\left(3m-1\right)x+m-2\)có dạng \(y=ax\)
\(\Leftrightarrow m-2=0\)
\(\Leftrightarrow m=2\)
\(c)\) VÌ \(n\left(-1;1\right)\in\left(d\right)\Rightarrow\)Thay \(x=-1;y=1\)vào đths
Ta có: \(\left(3m-1\right)\left(-1\right)+m-2=1\)
\(\Leftrightarrow-3m+1+m-2=1\)
\(\Leftrightarrow-2m-1=1\)
\(\Leftrightarrow m=-1\)
Vậy \(m=-1\)
\(d)\) Vì \(\left(d\right)\)cắt đường thẳng \(y=2x-1\)tại điểm có hoành độ \(=1\)
\(\Rightarrow\) Thay \(x=1\)vào hàm số \(y=2x-1\)
Ta có: \(y=2.1-1\)
\(\Leftrightarrow y=2-1=1\)
\(\Leftrightarrow\left(1;1\right)\in\left(d\right)\)
Thay \(x=1;y=1\)vào hàm số \(y=\left(3m-1\right)x+m-2\)
Ta có: \(\left(3m-1\right)1+m-2=1\)
\(\Leftrightarrow3m-1+m-2=1\)
\(\Leftrightarrow4m-3=1\)
\(\Leftrightarrow m=1\)
Vậy \(m=1\)
\(e)\) \(\left(d\right)//\)đường thẳng \(y=5x+1\)
\(\Leftrightarrow\hept{\begin{cases}3m-1=5\\m-2\ne1\end{cases}\Leftrightarrow\hept{\begin{cases}3m=6\\m\ne3\end{cases}\Leftrightarrow}\hept{\begin{cases}m=2\\m\ne3\end{cases}}}\Leftrightarrow m=2\)
Vậy \(m=2\)
\(f)\) \(\left(d\right)\)cắt đường thẳng \(y=2x-2020\)
\(\Leftrightarrow3m-1\ne-2\)
\(\Leftrightarrow3m\ne3\)
\(\Leftrightarrow m\ne1\)
Vậy \(m\ne1\)
\(g)\) \(\left(d\right)\perp\)đường thẳng \(y=\frac{1}{4}x-2019\)
\(\Leftrightarrow\left(3m-1\right).\frac{1}{4}=-1\)
\(\Leftrightarrow\frac{3}{4}m-\frac{1}{4}=-1\)
\(\Leftrightarrow\frac{3}{4}m=-\frac{3}{4}\)
\(\Leftrightarrow m=-1\)
Vậy \(m=-1\)
\(h)\) \(\left(d\right)\)cắt đường thẳng \(y=8x-5\)tại một điểm thuộc trục tung
\(\Leftrightarrow\hept{\begin{cases}3m-1\ne8\\m-2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}3m\ne9\\m=-5+2\end{cases}\Leftrightarrow}\hept{\begin{cases}m\ne3\\m=3\end{cases}}\left(ktm\right)}\)
Vậy không tìm được giá trị \(x\)nào TMĐK
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
a, Đường thẳng d cắt trục hoành tại điểm có hoành độ bằng 2 nên
( d ) đi qua A( 2,0 )
Thay A( 2,0 ) vào đường thẳng d ta được
\(\left(1-m\right).2+m+2=0\)
\(2-2m+m+2=0\)
\(4-m=0\)
\(m=4\)
b, Đường thẳng d song song vs đường thẳng y = 2x - 1 nên
1 - m = 0 và m + 2 khác -1
m = 1 và m khác -3
Để ( d1 ) cắt ( d2 ) thì: \(1\ne2\)
Hoành độ giao điểm của ( d1 ) và ( d2 ) có nghiệm là:
x - 3m + 1 = 2x - 2
- x - 3m + 3 = 0
- x - 3.( m - 1 ) = 0
x = - 3.( m - 1 )
\(\Rightarrow y=-6m+4\)
Để hai đường thẳng ( d1 ) và ( d2 ) cắt nhau tại một điểm nằm trên trục hoành thì:
y = 0 \(\Rightarrow-6m+4=0\Rightarrow m=\frac{4}{6}=\frac{2}{3}\)
Vậy...
sai r bạn , nằm phía trên chứ không phải nằm trên , y>0 mới đúng
Để hai đường cắt nhau tại trục hoành thì
1=2 và m/1=m+1/2
=>2m=m+1
=>m=1