K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2021

a, \(x^2-5=0\Leftrightarrow\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=0\Leftrightarrow x=\pm\sqrt{5}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{\pm\sqrt{5}\right\}\)

b, \(x^2-2\sqrt{11}x+11=0\Leftrightarrow x^2-2\sqrt{11}x+\left(\sqrt{11}\right)^2=0\)

\(\Leftrightarrow\left(x-\sqrt{11}\right)^2=0\Leftrightarrow x=\sqrt{11}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\sqrt{11}\right\}\)

14 tháng 4 2021

x2 - 5 = 0

Δ = b2 - 4ac = 0 + 20 = 20

Δ > 0, áp dụng công thức nghiệm thu được x = ±√5

x2 - 2√11x + 11 = 0

Δ = b2 - 4ac = 44 - 44 = 0

Δ = 0 => phương trình có nghiệm kép x1 = x2 = -b/2a = √11

29 tháng 4 2021

a, \(\sqrt{\left(2x-1\right)^2}=3\Leftrightarrow\left|2x-1\right|=3\)

Với \(x\ge\frac{1}{2}\)pt có dạng : \(2x-1=3\Leftrightarrow x=2\)( tm )

Với \(x< \frac{1}{2}\)pt có dạng : \(-2x+1=3\Leftrightarrow x=-1\)( tm ) 

Vậy tập nghiệm của pt là S = { -1 ; 2 } 

b, \(\frac{5}{3}\sqrt{15x}-\sqrt{15x}-2=\frac{1}{3}\sqrt{15x}\)ĐK : \(x\ge0\)

\(\Leftrightarrow\frac{2}{3}\sqrt{15x}-2=\frac{1}{3}\sqrt{15x}\Leftrightarrow\frac{1}{3}\sqrt{15x}=2\)

\(\Leftrightarrow\sqrt{15x}=6\)bình phương 2 vế : \(\Leftrightarrow15x=36\Leftrightarrow x=\frac{36}{15}=\frac{12}{5}\)( tm ) 

Vậy tập nghiệm của pt là S = { 12/5 } 

17 tháng 5 2021
) √ ( 2 x − 1 ) 2 = 3 ⇒ | 2 x − 1 | = 3 ⇔ 2 x − 1 = ± 3 +) TH1: 2 x − 1 = 3 ⇒ 2 x = 4 ⇒ x = 2 +) TH2: 2 x − 1 = − 3 ⇒ 2 x = − 2 ⇒ x = − 1 Vậy x = − 1 ; x = 2 . b) Điều kiện: x ≥ 0 5 3 √ 15 x − √ 15 x − 2 = 1 3 √ 15 x ⇔ 5 3 √ 15 x − √ 15 x − 1 3 √ 15 x = 2 ⇔ ( 5 3 − 1 − 1 3 ) √ 15 x = 2 ⇔ 1 3 √ 15 x = 2 ⇔ √ 15 x = 6 ⇔ 15 x = 36 ⇔ x = 12 5 Vậy x = 12 5 .
14 tháng 4 2021

a, \(x^2-3=\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)

b, \(x^2-6=\left(x-\sqrt{6}\right)\left(x+\sqrt{6}\right)\)

c, \(x^2+2\sqrt{3}+3=x^2+2\sqrt{3}+\left(\sqrt{3}\right)^2=\left(x+\sqrt{3}\right)^2\)

d, \(x^2-2\sqrt{5}x+5=x^2-2\sqrt{5}x+\left(\sqrt{5}\right)^2=\left(x-\sqrt{5}\right)^2\)

21 tháng 5 2021

a) \(x^2\) - 3 = (x-\(\sqrt{3}\))(x+\(\sqrt{3}\))

b)\(x^2\)-6=(x-\(\sqrt{6}\))(x+\(\sqrt{6}\))

c) \(x^2+2\sqrt{3}x+3\)\(\left(x+\sqrt{3}\right)^2\)

d) \(x^2-2\sqrt{5}x+5\)=\(\left(x-\sqrt{5}\right)^2\)

23 tháng 4 2021

Rút gọn các biểu thức sau với x≥0x≥0:

a) 2\(\sqrt{3x}\)-4\(\sqrt{3x}\)+27-3\(\sqrt{3x}\)=27-5\(\sqrt{3x}\)

b)3\(\sqrt{2x}\)-5\(\sqrt{8x}\)+7\(\sqrt{18x}\)+28

=3\(\sqrt{2x}\)-10\(\sqrt{2x}\)+21\(\sqrt{2x}\)+28

=14\(\sqrt{2x}\)+28=14(\(\sqrt{2x}\)+2)

23 tháng 4 2021

a) \(2\sqrt{3x}-4\sqrt{3x}+27-3\sqrt{3x}\)

\(=\left(2\sqrt{3x}-4\sqrt{3x}-3\sqrt{3x}\right)+27\)

\(=-5\sqrt{3x}+27\)

14 tháng 4 2021

a) \(\sqrt{x^2}\)=7

=> x2=49

=> x={-7;7}

b) \(\sqrt{x^2}\)=|-8|=8

=> x2=64

=>x={-8;8}

c) \(\sqrt{4x^2}\)=6

4x2=36

=>x2=9

=> x={-3;3}

d)\(\sqrt{9x^2}\)=|-12|=12

=> 9x2=144

=> x2=16

=> x={-4;4}

20 tháng 5 2021

a)x=+7 hoặc x= -7

b) x=8 hoặc x= -8

c)x=3 hoặc x =-3

d) x=4 hoặc x= -4

23 tháng 5 2021

a) -17√3/3                                                  b) 11√6 

c) 21                                                            d) 11

29 tháng 5 2021

a)  a) Biến đổi vế trái thành 326+236426326+236−426 và làm tiếp.
b) Biến đổi vế trái thành (6x+136x+6x):6x(6x+136x+6x):6x và làm tiếp

23 tháng 4 2021

a) Ta có : Vì \(x\ge0\)và \(y\ge0\)nên \(x+y\ge0\)\(\Leftrightarrow\left|x+y\right|=x+y\)

\(\frac{2}{x^2-y^2}\sqrt{\frac{3\left(x+y\right)^2}{2}}\)

\(=\frac{2}{x^2-y^2}\sqrt{\frac{3}{2}.\left(x+y\right)^2}\)

\(=\frac{2}{x^2-y^2}.\sqrt{\frac{3}{2}}.\left|x+y\right|\)

\(=\frac{2}{\left(x-y\right)\left(x+y\right)}.\sqrt{\frac{3}{2}}.\left(x+y\right)\)

\(=\frac{2}{x-y}.\sqrt{\frac{3}{2}}\)

\(=\frac{1}{x-y}.2.\sqrt{\frac{3}{2}}\)

\(=\frac{1}{x-y}.\sqrt{\frac{2^2.3}{2}}\)

\(=\frac{1}{x-y}.\sqrt{6}=\frac{\sqrt{6}}{x-y}\)

23 tháng 4 2021

a, \(\frac{2}{x^2-y^2}\sqrt{\frac{3\left(x+y\right)^2}{2}}=\frac{2}{x^2-y^2}\frac{\sqrt{3}\left|x+y\right|}{\sqrt{2}}=\frac{2\sqrt{3}\left(x+y\right)}{\left(x-y\right)\left(x+y\right)\sqrt{2}}\)

do \(x\ge0;y\ge0\)

\(=\frac{2\sqrt{3}}{\sqrt{2}\left(x-y\right)}=\frac{2\sqrt{6}}{2\left(x-y\right)}=\frac{\sqrt{6}}{x-y}\)

14 tháng 4 2021

a, \(2\sqrt{a^2}-5a=2\left|a\right|-5a\)do a < 0 

\(=-2a-5a=-7a\)

b, \(\sqrt{25a^2}+3a=\sqrt{\left(5a\right)^2}+3a=\left|5a\right|+3a\)do \(a\le0\)

TH1 : \(-5a+3a=-2a\)với \(a< 0\)

hoặc TH2 : \(5+3=8\)

c, \(\sqrt{9a^4}+3a^2=\sqrt{\left(3a^2\right)^2}+3a^2=\left|3a^2\right|+3a^2\)

\(=3a^2+3a^2=6a^2\)do \(3>0;a^2\ge0\forall a\Rightarrow3a^2\ge0\forall a\)

d, \(5\sqrt{4a^6}-3a^3=5\sqrt{\left(2a^3\right)^2}-3a^3\)

\(=5\left|2a^3\right|-3a^3=-10a^3-3a^3=-13a^3\)do \(a< 0\Rightarrow a^3< 0\)

21 tháng 5 2021

a) \(2\sqrt{a^2}-5a\)=2\(|a|\)-5a = -2a-5a=-7a

b) \(\sqrt{25a^2}\) +3a = 5\(|a|\) + 3a=5a+3a=8a.

c) \(\sqrt{9a^4}\) + 3\(a^2\)=6\(a^2\)

d) \(5\sqrt{4a^6}\) - 3\(a^3\)=-13\(a^3\)

14 tháng 4 2021

a) √2x+7

Để √2x+7 có nghĩa2x+70

2x-7

x−7/2

b) √−3x+4

Để √−3x+4 có nghĩa -3x+4≥≥0

-3x-4

x4/3

c)√1/−1+x1

Để √1/−1+x có nghĩa 1/−1+x≥0

-1+x>0

x>1

d) √1+x21+x2

Ta có x2+1≥≥1>0;x∈R

Vậy x∈R

21 tháng 5 2021

+a) \(\sqrt{2x+7}\) co nghia khi 2x+7≥0⇒x≥\(\dfrac{-7}{2}\)

b) \(\sqrt{-3x+4}\) co nghia khi -3x+4≥0⇒x≤\(\dfrac{4}{3}\)

c) \(\sqrt{\dfrac{1}{-1+x}}\) cp nghia khi \(\dfrac{1}{-1+x}\)≥0 ⇒-1+x>0⇒x>1

d) \(\sqrt{1+x^2}\) co nghia khi 1+x≥0 ma \(x^2\)≥0⇒\(x^2\) + 1≥1>0 vs moi x 

14 tháng 4 2021

a) (\(\sqrt{3}\)-1)2=3-2\(\sqrt{3}\)+1= 4-2\(\sqrt{3}\) (ĐPCM)

b) \(\sqrt{4-2\sqrt{3}}\)=\(\sqrt{3}\)-1 >0

Bình phương 2 vế, ta có:

4-2\(\sqrt{3}\)=3-2\(\sqrt{3}\)+1= 4-2\(\sqrt{3}\) (ĐPCM)

21 tháng 5 2021

a)  \(\left(\sqrt{3}-1\right)^2\)=\(\left(\sqrt{3}\right)^2\)- 2\(\sqrt{3}\) +1= 3- 2\(\sqrt{3}\) +1=4-2\(\sqrt{3}\)

b)  \(\sqrt{4-2\sqrt{3}}-\sqrt{3}\) = \(\sqrt{\left(\sqrt{3}-1\right)^2}\) - \(\sqrt{3}\)\(|\sqrt{3}-1|\)-\(\sqrt{3}\)=\(\sqrt{3}\)-1-\(\sqrt{3}\)=-1