K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔAHC

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: HD=HE và AD=AE

d: Xét ΔABC có

AD/AB=AE/AC

nên DE//BC

30 tháng 3 2022

help me giúp mk giải bài này vs 

 

 

A B C H D E

mk vẽ hơi xấu thông cảm

3 tháng 3 2016

k s bạn , thanks pạn nhìu

23 tháng 1 2022

a) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC).

=> AH là đường phân giác góc A (Tính chất tam giác cân).

b) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC).

=> AH là đường trung tuyến (Tính chất tam giác cân).

=> H là trung điểm của BC.

=> BH = HC = \(\dfrac{1}{2}\) BC = \(\dfrac{1}{2}\).8 = 4 (cm).

Xét tam giác AHB vuông tại A:

Ta có: \(AB^2=AH^2+BH^2H^2\) (Định lý Pytago).

=> \(5^2=AH^2+4^2.\) => \(AH^2=5^2-4^2=9.\)

=> AH = 3 (cm).

c) Xét tam giác AHD vuông tại D và tam giác AHE vuông tại A:

AH chung.

Góc DAH = Góc EAH (AH là đường phân giác góc A).

=> Tam giác AHD = Tam giác AHE (ch - gn).

=> HD = HE (2 cạnh tương ứng). 

=> Tam giác DHE cân tại H.

29 tháng 4 2020

đây nhé bạn

image

6 tháng 2 2022

a.ta có trong tam giác cân ABC đường cao cũng là đường trung tuyến => HB = HC

b.áp dụng định lý pitago ta có:

\(AB^2=AH^2+HB^2\)

\(5^2=AH^2+\left(8:2\right)^2\)

\(AH=\sqrt{5^2-4^2}=3cm\)

c.Xét tam giác vuông BHD và tam giác vuông CHE, có:

BH = CH ( cmt )

góc B = góc C ( ABC cân )

Vậy tam giác vuông BHD = tam giác vuông CHE 

=> HD = HE 

=> HDE cân tại H

d.ta có AB = AD + DB

           AC = AE + EC

Mà BD = CE ( 2 cạnh tương ứng của 2 tam giác bằng nhau )

=> AD = AE 

=> ADE cân tại A
Mà A là đường cao cũng là đường trung trực trong tam giác cân ABC cũng là đường trung trực của tam giác cân ADE ( cmx )

Chúc bạn học tốt !!!!

Bài 1: Cho ABC cân tại A kẻ AH ⊥ BC (HBC)a) Chứng minh: ∠ABH = ∠ABH suy ra AH là tia phân giác của ∠BACb) Kẻ HD ⊥ AB (D ∈ AB), HE ⊥ AC (E ∈ AC). Chứng minh ∠HDE cân.c) Nếu cho AB = 29 cm, AH = 20 cm. Tính độ dài cạnh AB?d) Chứng minh BC // DE.e) Nếu cho ∠BAC =  1200 thì △HDE trở thành tam giác gì? Vì sao?Bài 2: Cho tam giác ABC vuông tại A, có B = 60° và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.1/ Chứng minh: △ABD...
Đọc tiếp

Bài 1: Cho ABC cân tại A kẻ AH ⊥ BC (HBC)

a) Chứng minh: ∠ABH = ∠ABH suy ra AH là tia phân giác của ∠BAC

b) Kẻ HD ⊥ AB (D ∈ AB), HE ⊥ AC (E ∈ AC). Chứng minh ∠HDE cân.

c) Nếu cho AB = 29 cm, AH = 20 cm. Tính độ dài cạnh AB?

d) Chứng minh BC // DE.

e) Nếu cho ∠BAC =  1200 thì △HDE trở thành tam giác gì? Vì sao?

Bài 2: Cho tam giác ABC vuông tại A, có B = 60° và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.

1/ Chứng minh: △ABD = △EBD.

2/ Chứng minh: △ABE là tam giác đều.

3/ Tính độ dài cạnh BC.

Bài 3: Cho tam giác ABC có AB = AC =10cm, BC = 12cm. Vẽ AH vuông góc BC tại H.

            a) Chứng minh: △ABC  cân.

            b) Chứng minh △AHB = △AHC, từ đó chứng minh AH là tia phân giác của góc A.

            c) Từ H vẽ HM ⊥ AB (M ∈ AB) và kẻ HN ⊥ AC (N ∈ AC).

            Chứng minh : △BHM =△HCN 

            d) Tính độ dài AH.

            e) Từ B kẻ Bx ⊥ AB, từ C kẻ Cy ⊥ AC chúng cắt nhau tại O. Tam giác OBC là tam giác gì? Vì sao?

Bài 4: Cho góc nhọn xOy. Gọi I là một điểm thuộc tia phân giác của góc xOy. Kẻ IA vuông góc với Ox (điểm A thuộc tia Ox) và IB vuông góc với Oy (điểm B thuộc tia Oy)

a) Chứng minh △OAI = △OBI,  IA = IB.

b) Cho biết OI = 10cm, AI = 6cm. Tính OA.

c) Gọi K là giao điểm của BI và Ox và M là giao điểm của AI với Oy. So sánh AK và BM?

d) Gọi C là giao điểm của OI và MK. Chứng minh OC vuông góc với MK

Bài 5: Cho tam giác ABC cân ở A. Trên cạnh AB lấy điểm M, trên tia đối tia CA lấy điểm N sao cho BM = CN. Gọi K là trung điểm MN. Chứng minh ba điểm B, K, C thẳng hàng

Héo mì pờ li mọi người ơi!!!!!!!!!!!!!!!!!!!!!! TvT - TvT - TvT - TvT - TvT - TvT - TvT

1

Bài 1: 

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔACH

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)

hay AH là tia phân giác của góc BAC

b: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có 

HB=HC

\(\widehat{B}=\widehat{C}\)

Do đó: ΔHDB=ΔHEC

Suy ra; HD=HE

hay ΔHDE cân tại H

d: Xét ΔABC có BD/AB=CE/AC

nên DE//BC