Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(ab+b\sqrt{a}+\sqrt{a}+1=\sqrt{a}b\left(\sqrt{a}+1\right)+\sqrt{a}+1\)
\(=\left(b\sqrt{a}+1\right)\left(\sqrt{a}+1\right)\)
b, \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)
\(=\sqrt{x^2}\left(\sqrt{x}+\sqrt{y}\right)-\sqrt{y^2}\left(\sqrt{y}+\sqrt{x}\right)=\left(\left|x\right|-\left|y\right|\right)\left(\sqrt{x}+\sqrt{y}\right)\)
a) Ta có : Vì \(x\ge0\)và \(y\ge0\)nên \(x+y\ge0\)\(\Leftrightarrow\left|x+y\right|=x+y\)
\(\frac{2}{x^2-y^2}\sqrt{\frac{3\left(x+y\right)^2}{2}}\)
\(=\frac{2}{x^2-y^2}\sqrt{\frac{3}{2}.\left(x+y\right)^2}\)
\(=\frac{2}{x^2-y^2}.\sqrt{\frac{3}{2}}.\left|x+y\right|\)
\(=\frac{2}{\left(x-y\right)\left(x+y\right)}.\sqrt{\frac{3}{2}}.\left(x+y\right)\)
\(=\frac{2}{x-y}.\sqrt{\frac{3}{2}}\)
\(=\frac{1}{x-y}.2.\sqrt{\frac{3}{2}}\)
\(=\frac{1}{x-y}.\sqrt{\frac{2^2.3}{2}}\)
\(=\frac{1}{x-y}.\sqrt{6}=\frac{\sqrt{6}}{x-y}\)
a, \(\frac{2}{x^2-y^2}\sqrt{\frac{3\left(x+y\right)^2}{2}}=\frac{2}{x^2-y^2}\frac{\sqrt{3}\left|x+y\right|}{\sqrt{2}}=\frac{2\sqrt{3}\left(x+y\right)}{\left(x-y\right)\left(x+y\right)\sqrt{2}}\)
do \(x\ge0;y\ge0\)
\(=\frac{2\sqrt{3}}{\sqrt{2}\left(x-y\right)}=\frac{2\sqrt{6}}{2\left(x-y\right)}=\frac{\sqrt{6}}{x-y}\)
Rút gọn các biểu thức sau với x≥0x≥0:
a) 2\(\sqrt{3x}\)-4\(\sqrt{3x}\)+27-3\(\sqrt{3x}\)=27-5\(\sqrt{3x}\)
b)3\(\sqrt{2x}\)-5\(\sqrt{8x}\)+7\(\sqrt{18x}\)+28
=3\(\sqrt{2x}\)-10\(\sqrt{2x}\)+21\(\sqrt{2x}\)+28
=14\(\sqrt{2x}\)+28=14(\(\sqrt{2x}\)+2)
a) \(2\sqrt{3x}-4\sqrt{3x}+27-3\sqrt{3x}\)
\(=\left(2\sqrt{3x}-4\sqrt{3x}-3\sqrt{3x}\right)+27\)
\(=-5\sqrt{3x}+27\)
a, \(\sqrt{\left(2x-1\right)^2}=3\Leftrightarrow\left|2x-1\right|=3\)
Với \(x\ge\frac{1}{2}\)pt có dạng : \(2x-1=3\Leftrightarrow x=2\)( tm )
Với \(x< \frac{1}{2}\)pt có dạng : \(-2x+1=3\Leftrightarrow x=-1\)( tm )
Vậy tập nghiệm của pt là S = { -1 ; 2 }
b, \(\frac{5}{3}\sqrt{15x}-\sqrt{15x}-2=\frac{1}{3}\sqrt{15x}\)ĐK : \(x\ge0\)
\(\Leftrightarrow\frac{2}{3}\sqrt{15x}-2=\frac{1}{3}\sqrt{15x}\Leftrightarrow\frac{1}{3}\sqrt{15x}=2\)
\(\Leftrightarrow\sqrt{15x}=6\)bình phương 2 vế : \(\Leftrightarrow15x=36\Leftrightarrow x=\frac{36}{15}=\frac{12}{5}\)( tm )
Vậy tập nghiệm của pt là S = { 12/5 }
a) a) Biến đổi vế trái thành 32√6+23√6−42√6326+236−426 và làm tiếp.
b) Biến đổi vế trái thành (√6x+13√6x+√6x):√6x(6x+136x+6x):6x và làm tiếp
\(a)x^2=2\Rightarrow x_1=\sqrt{2}\) và \(x_2=-\sqrt{2}\)
Dùng máy tính bỏ túi ta tính được:
\(\sqrt{2}\text{≈}1,414213562\)
Kết quả làm tròn đến chữ số thập phân thứ ba là:
\(x_1=1,414;x_2=-1414\)
\(b)x^2=3\Rightarrow x_1=\sqrt{3}\)và \(x_2=-\sqrt{3}\)
Dùng máy tính ta được:
\(\sqrt{3}\text{≈ 1,732050907}\)
Vậy \(x_1=1,732;x_2=-1,732\)
\(c)x^2=3,5\Rightarrow x_1=\sqrt{3,5}\)và \(x_2=-\sqrt{3,5}\)
Dùng máy tính ta được:
\(\sqrt{3,5}\text{≈ 1,870828693}\)
Vậy \(x_1=1,871;x_2=-1,871\)
\(d)x^2=4,12\Rightarrow x_1=\sqrt{4,12}\)và \(x_2=-\sqrt{4,12}\)
Dùng máy tính ta được:
\(\sqrt{4,2}\text{≈ 2,029778313}\)
Vậy \(x_1=2,030;x_2=-2,030\)
a) x = \(\sqrt{2}\)
b) x = \(\sqrt{3}\)
c) x = \(\dfrac{\sqrt{14}}{2}\)
d)x = \(\dfrac{\sqrt{103}}{5}\)
a, \(x^2-5=0\Leftrightarrow\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=0\Leftrightarrow x=\pm\sqrt{5}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{\pm\sqrt{5}\right\}\)
b, \(x^2-2\sqrt{11}x+11=0\Leftrightarrow x^2-2\sqrt{11}x+\left(\sqrt{11}\right)^2=0\)
\(\Leftrightarrow\left(x-\sqrt{11}\right)^2=0\Leftrightarrow x=\sqrt{11}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\sqrt{11}\right\}\)
x2 - 5 = 0
Δ = b2 - 4ac = 0 + 20 = 20
Δ > 0, áp dụng công thức nghiệm thu được x = ±√5
x2 - 2√11x + 11 = 0
Δ = b2 - 4ac = 44 - 44 = 0
Δ = 0 => phương trình có nghiệm kép x1 = x2 = -b/2a = √11
a) \sqrt{-9a}-\sqrt{9+12 a+4 a^{2}}−9a−9+12a+4a2
=\sqrt{-9 a}-\sqrt{3^{2}+2.3 .2 a+(2 a)^{2}}=−9a−32+2.3.2a+(2a)2
=\sqrt{3^{2} \cdot(-a)}-\sqrt{(3+2 a)^{2}}=32⋅(−a)−(3+2a)2
=3 \sqrt{-a}-|3+2 a|=3−a−∣3+2a∣
Thay a=-9a=−9 ta được:
3 \sqrt{9}-|3+2 \cdot(-9)|=3.3-15=-639−∣3+2⋅(−9)∣=3.3−15=−6.
b) Điều kiện: m \neq 2m=2
1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}1+m−23mm2−4m+4
=1+\dfrac{3 m}{m-2} \sqrt{m^{2}-2.2 \cdot m+2^{2}}=1+m−23mm2−2.2⋅m+22
=1+\dfrac{3 m}{m-2} \sqrt{(m-2)^{2}}=1+m−23m(m−2)2
=1+\dfrac{3 m|m-2|}{m-2}=1+m−23m∣m−2∣
+) m>2m>2, ta được: 1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}=1+3 m1+m−23mm2−4m+4=1+3m. (1)(1)
+) m<2m<2, ta được: 1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}=1-3 m1+m−23mm2−4m+4=1−3m. (2)(2)
Với m=1,5<2m=1,5<2. Thay vào biểu thức (2)(2) ta có: 1-3 m=1-3.1,5=-3,51−3m=1−3.1,5=−3,5
Vậy giá trị biểu thức tại m=1,5m=1,5 là -3,5−3,5.
c) \sqrt{1-10 a+25 a^{2}}-4a1−10a+25a2−4a
=\sqrt{1-2.1 .5 a+(5 a)^{2}}-4 a=1−2.1.5a+(5a)2−4a
=\sqrt{(1-5a)^{2}}-4 a=(1−5a)2−4a
=|1-5 a|-4 a=∣1−5a∣−4a
+) Với a <\dfrac{1}{5}a<51, ta được: 1-5a-4 a=1-9a1−5a−4a=1−9a. (3)(3)
+) Với a \ge \dfrac{1}{5}a≥51, ta được: 5 a-1-4 a=a-15a−1−4a=a−1. (4)(4)
Vì a=\sqrt{2}>\dfrac{1}{5}a=2>51. Thay vào biểu thức (4)(4) ta có: a-1=\sqrt{2}-1a−1=2−1.
Vậy giá trị của biểu thức tại a=\sqrt{2}a=2 là \sqrt{2}-12−1.
d) 4 x-\sqrt{9 x^{2}+6 x+1}4x−9x2+6x+1
=4 x-\sqrt{(3 x)^{2}+2.3 x+1}=4 x-\sqrt{(3 x+1)^{2}}=4x−(3x)2+2.3x+1=4x−(3x+1)2
=4 x-|3x+1|=4x−∣3x+1∣
+) Với 3x+1 \geq 03x+1≥0 \Leftrightarrow⇔ x \ge -\dfrac{1}{3}x≥−31, ta có: 4 x-(3x+1)=4 x-3 x-1 =x-14x−(3x+1)=4x−3x−1=x−1. (5)(5)
+) Với 3x+1<03x+1<0 \Leftrightarrow⇔ x <-\dfrac{1}{3}x<−31, ta có: 4 x+(3 x+1)=4 x+3x+1=7x+14x+(3x+1)=4x+3x+1=7x+1. (6)(6)
Vì x=-\sqrt{3}<-\dfrac{1}{3}x=−3<−31. Thay vào biểu thức (6)(6), ta có: 7 x+1=7 .(-\sqrt{3})+1=-7 \sqrt{3}+17x+1=7 .(−3)+1=−73+1.
Giá trị của biểu thức tại x=-\sqrt{3}x=−3 là -7 \sqrt{3}+1−73+1.
a, \(x^2-3=\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)
b, \(x^2-6=\left(x-\sqrt{6}\right)\left(x+\sqrt{6}\right)\)
c, \(x^2+2\sqrt{3}+3=x^2+2\sqrt{3}+\left(\sqrt{3}\right)^2=\left(x+\sqrt{3}\right)^2\)
d, \(x^2-2\sqrt{5}x+5=x^2-2\sqrt{5}x+\left(\sqrt{5}\right)^2=\left(x-\sqrt{5}\right)^2\)
a) \(x^2\) - 3 = (x-\(\sqrt{3}\))(x+\(\sqrt{3}\))
b)\(x^2\)-6=(x-\(\sqrt{6}\))(x+\(\sqrt{6}\))
c) \(x^2+2\sqrt{3}x+3\)= \(\left(x+\sqrt{3}\right)^2\)
d) \(x^2-2\sqrt{5}x+5\)=\(\left(x-\sqrt{5}\right)^2\)