Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Đặt \(a=m^2-4\)
\(a)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)nghịch biến
\(\Leftrightarrow a< 0\)
\(\Leftrightarrow m^2-4< 0\)
\(\Leftrightarrow m^2< 4\)
\(\Leftrightarrow-\sqrt{4}< m< \sqrt{4}\)
\(\Leftrightarrow-2< m< 2\)
Vậy với \(-2< m< 2\)thì hàm số nghịch biến
\(b)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)đồng biến \(\forall x>0\)
\(\Leftrightarrow a>0\)
\(\Leftrightarrow m^2-4>0\)
\(\Leftrightarrow m^2>4\)
\(\Leftrightarrow\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)
Vậy với \(\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)thì hàm số đồng biến \(\forall x>0\)
1) \(4x^2-9=0\)
Theo pt ta có: \(a=4;b=0;c=-9\)
\(\Delta=b^2-4ac=0^2-4.4.\left(-9\right)=144>0\)
=> Pt có 2 nghiệm phân biệt
\(x_1=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-0-\sqrt{144}}{2.4}=-\dfrac{3}{2}\\ x_2=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-0+\sqrt{144}}{2.4}=\dfrac{3}{2}\)
2) \(-2x^2+50=0\)
Theo pt ta có: \(a=-2;b=0;c=50\)
\(\Delta b^2-4ac=0^2-4.\left(-2\right).50=400>0\)
=> PT có 2 nghiệm phân biệt
\(x_1=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-0-\sqrt{400}}{2.\left(-2\right)}=5\\ x_2=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-0+\sqrt{400}}{2a}=-5\)
3) \(3x^2+11=0\)
Theo pt ta có: \(a=3;b=0;c=11\)
\(\Delta=b^2-4ac=0^2-4.3.11=-132< 0\)
=> PT vô nghiệm
1, - Xét phương trình hoành độ giao điểm :\(2x^2=ax+b\)
\(\Rightarrow2x^2-ax-b=0\left(I\right)\)
Mà (P) tiếp xúc với d .
Nên PT ( I ) có duy nhất một nghiệm .
\(\Leftrightarrow\Delta=\left(-a\right)^2-4.2.\left(-b\right)=a^2+8b=0\)
Lại có : d đi qua A .
\(\Rightarrow b+0a=-2=b\)
\(\Rightarrow a=4\)
2. Tương tự a
3. - Xét phương trình hoành độ giao điểm :\(2x^2=2m+1\)
\(\Rightarrow2x^2-2m-1=0\)
Có : \(\Delta^,=\left(-m\right)^2-\left(-1\right).2=m^2+3\)
=> Giao điểm của P và d là : \(\left\{{}\begin{matrix}x_1=\dfrac{m+\sqrt{m^2+3}}{2}\\x_2=\dfrac{m-\sqrt{m^2+3}}{2}\end{matrix}\right.\)
Bài 1:(2 điểm) Đưa các phương trình sau về dạng ax2 + bx+c = 0 và chỉ rõ các hệ số a, b, c.
a) \(5x^2 + 2x = 4 - x\) <=> \(5x^2+3x-4=0\) => $a=5; b=3; c=-4$
b) $x^2 + 2x - 7 = 3x$ <=> $x^2-x-7=0$ => $a=1;b=-1;c=-7$
c) $2x^2 + x = x + 1$ <=> $2x^2-1=0$ => $a=2;b=0;c=-1$
d) $5x^2 - m^2 = 2(m - 1)x$ (m là hằng số) <=> $5x^2-2(m-1)x-m^2=0$ => $a=5;b=2(m-1);c=-m^2$
Bài 2:(3 điểm) Giải các phương trình sau bằng phương pháp trực tiếp (không dùng công thức nghiệm):
a) $x^2 - 8x = -7$ <=> $x^2-8x+7=0$ có $a+b+c=1-8+7=0$ nên $x=1$ hoặc $x=7$
b) $x^2 + 6x = -10$ <=> $x^2+6x+10=0$ \(\Delta'=3^2-10=-1< 0\) => pt vô nghiệm
c) $2x^2 + 5x + 2 = 0$ <=> $(x+2)(2x+1)=0$ <=> x=-2 hoặc x=-1/2
Bạn lưu ý lần sau khi đăng câu hỏi bạn nên tách các bài với nhau để nhận được câu trả lời sớm nhất nhé
a) 3 x 2 + 8 x + 4 = 0 ;
a = 3; b' = 4; c = 4
Δ ' = ( b ' ) 2 - a c = 4 2 - 3 . 4 = 4 ⇒ √ ( Δ ' ) = 2
Phương trình có 2 nghiệm:
x 1 = ( - 4 + 2 ) / 3 = ( - 2 ) / 3 ; x 2 = ( - 4 - 2 ) / 3 = - 2
b) 7 x 2 - 6 √ 2 x + 2 = 0
a = 7; b' = -3√2; c = 2
Δ ' = ( b ' ) 2 - a c = ( - 3 √ 2 ) 2 - 7 . 2 = 4 ⇒ √ ( Δ ' ) = 2
Phương trình có 2 nghiệm:
x 1 = ( 3 √ 2 + 2 ) / 7 ; x 2 = ( 3 √ 2 - 2 ) / 7
Bài 1:
a) \(3x^2+8x-3=0\)
Hệ số: a=3,b'=4,c=(-3)
\(\Delta'=4^2-3.\left(-3\right)=25>0\)
nên pt có 2 nghiệm phân biệt:
\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-4+\sqrt{25}}{3}=\frac{1}{3}\)
\(x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{-4-\sqrt{25}}{3}=-3\)
b) \(9x^2-6x+1=0\)
Hệ số: a=9,b'=3,c=1
\(\Delta'=3^2-9.1=0\left(=0\right)\)
nên pt có nghiệm kép: \(x_1=x_2=\frac{-b'}{a}=\frac{-3}{9}=\frac{-1}{3}\)
c) \(2x^2-4x+7=0\)
Hệ số: a=2,b'=(-2),c = 7
\(\Delta'=\left(-2\right)^2-2.7=-10< 0\)
nên pt vô nghiệm