K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2020

Bài 1:

a) \(3x^2+8x-3=0\)

Hệ số: a=3,b'=4,c=(-3)
\(\Delta'=4^2-3.\left(-3\right)=25>0\)

nên pt có 2 nghiệm phân biệt:

\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-4+\sqrt{25}}{3}=\frac{1}{3}\)

\(x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{-4-\sqrt{25}}{3}=-3\)

b) \(9x^2-6x+1=0\)

Hệ số: a=9,b'=3,c=1

\(\Delta'=3^2-9.1=0\left(=0\right)\)

nên pt có nghiệm kép: \(x_1=x_2=\frac{-b'}{a}=\frac{-3}{9}=\frac{-1}{3}\)

c) \(2x^2-4x+7=0\)

Hệ số: a=2,b'=(-2),c = 7

\(\Delta'=\left(-2\right)^2-2.7=-10< 0\)

nên pt vô nghiệm

20 tháng 5 2015

hết hạn khỏi giải nhé mỏ vịt đi bơi đi

4 tháng 2 2020

Bài 3:

Đặt \(a=m^2-4\)

\(a)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)nghịch biến

\(\Leftrightarrow a< 0\)

\(\Leftrightarrow m^2-4< 0\)

\(\Leftrightarrow m^2< 4\)

\(\Leftrightarrow-\sqrt{4}< m< \sqrt{4}\)

\(\Leftrightarrow-2< m< 2\)

Vậy với \(-2< m< 2\)thì hàm số nghịch biến

\(b)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)đồng biến \(\forall x>0\)

\(\Leftrightarrow a>0\)

\(\Leftrightarrow m^2-4>0\)

\(\Leftrightarrow m^2>4\)

\(\Leftrightarrow\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)

Vậy với \(\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)thì hàm số đồng biến \(\forall x>0\)

4 tháng 3 2021

1) \(4x^2-9=0\)

Theo pt ta có: \(a=4;b=0;c=-9\)

\(\Delta=b^2-4ac=0^2-4.4.\left(-9\right)=144>0\)

=> Pt có 2 nghiệm phân biệt

\(x_1=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-0-\sqrt{144}}{2.4}=-\dfrac{3}{2}\\ x_2=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-0+\sqrt{144}}{2.4}=\dfrac{3}{2}\)

2) \(-2x^2+50=0\)

Theo pt ta có: \(a=-2;b=0;c=50\)

\(\Delta b^2-4ac=0^2-4.\left(-2\right).50=400>0\)

=> PT có 2 nghiệm phân biệt

\(x_1=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-0-\sqrt{400}}{2.\left(-2\right)}=5\\ x_2=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-0+\sqrt{400}}{2a}=-5\)

3) \(3x^2+11=0\)

Theo pt ta có: \(a=3;b=0;c=11\)

\(\Delta=b^2-4ac=0^2-4.3.11=-132< 0\)

=> PT vô nghiệm

4 tháng 3 2021

1) 4x2 - 9 = 0

=>4x2=9

=>x2=9/4

=>x=\(\pm\dfrac{3}{2}\)

2) - 2x2 + 50 = 0

=>2x2=50

=>x2=25

=>x=\(\pm5\)

 3) 3x2 + 11 = 0 

=>3x2=-11

=>x2=-11/3(vo li)

=>x\(\in\phi\)

BÀI 1Cho hàm số y=ax^2 có đồ thị Pa) tìm a biết rằng P qua điểm A (1;-1) .Vẻ P với a vừa tìm đượcb) trên P lấy điểm B có hoành độ -2, tìm phương trình của đường thẳng AB và tìm tọa độ giao điểm D của đường thẳng AB và trục tungc)viết phương trình đường thẳng (d) qua O và song song với AB, xác định toạ độ giao điểm C của (d) và P (C khác 0)d( chứng tỏ OCDA là hình vuông BÀI 2:Cho hàm...
Đọc tiếp

BÀI 1
Cho hàm số y=ax^2 có đồ thị P
a) tìm a biết rằng P qua điểm A (1;-1) .Vẻ P với a vừa tìm được
b) trên P lấy điểm B có hoành độ -2, tìm phương trình của đường thẳng AB và tìm tọa độ giao điểm D của đường thẳng AB và trục tung
c)viết phương trình đường thẳng (d) qua O và song song với AB, xác định toạ độ giao điểm C của (d) và P (C khác 0)
d( chứng tỏ OCDA là hình vuông

 

BÀI 2:
Cho hàm số y=ax^2
a) tìm a biét đồ của thị hàm số đã cho đi qua điểm A(-căn 3; 3). vẽ đồ thị P của hàm số với a vừa tìm được
b)trên P lấy 2 điểm B, C có hoành độ lần lượt là 1, 2 .Hảy viết phương trình đường thẳng BC
c) cho D( căn 3;3). Chứng tỏ điểm D thuộc P và tam giác OAD là tam giác đều.Tính diện tích của tam giác OAD

 

BÀI 5:Cho hàm số y=2x+b hãy xác định hệ số b trong các trường hợp sau :
a) đồ thị hàm số đã cho cắt trục tung tại điểm có tung độ bằng -3
b) đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 1.5

0
3 tháng 2 2021

1, - Xét phương trình hoành độ giao điểm :\(2x^2=ax+b\)

\(\Rightarrow2x^2-ax-b=0\left(I\right)\)

Mà (P) tiếp xúc với d .

Nên PT ( I ) có duy nhất một nghiệm .

\(\Leftrightarrow\Delta=\left(-a\right)^2-4.2.\left(-b\right)=a^2+8b=0\)

Lại có : d đi qua A .

\(\Rightarrow b+0a=-2=b\)

\(\Rightarrow a=4\)

2. Tương tự a

3. - Xét phương trình hoành độ giao điểm :\(2x^2=2m+1\)

\(\Rightarrow2x^2-2m-1=0\)

Có : \(\Delta^,=\left(-m\right)^2-\left(-1\right).2=m^2+3\)

=> Giao điểm của P và d là : \(\left\{{}\begin{matrix}x_1=\dfrac{m+\sqrt{m^2+3}}{2}\\x_2=\dfrac{m-\sqrt{m^2+3}}{2}\end{matrix}\right.\)

6 tháng 4 2020

Bài 1:(2 điểm) Đưa các phương trình sau về dạng ax2 + bx+c = 0 và chỉ rõ các hệ số a, b, c.
a) \(5x^2 + 2x = 4 - x\) <=> \(5x^2+3x-4=0\) => $a=5; b=3; c=-4$
b) $x^2 + 2x - 7 = 3x$ <=> $x^2-x-7=0$ => $a=1;b=-1;c=-7$
c) $2x^2 + x = x + 1$ <=> $2x^2-1=0$ => $a=2;b=0;c=-1$
d) $5x^2 - m^2 = 2(m - 1)x$ (m là hằng số) <=> $5x^2-2(m-1)x-m^2=0$ => $a=5;b=2(m-1);c=-m^2$
Bài 2:(3 điểm) Giải các phương trình sau bằng phương pháp trực tiếp (không dùng công thức nghiệm):
a) $x^2 - 8x = -7$ <=> $x^2-8x+7=0$ có $a+b+c=1-8+7=0$ nên $x=1$ hoặc $x=7$
b) $x^2 + 6x = -10$ <=> $x^2+6x+10=0$ \(\Delta'=3^2-10=-1< 0\) => pt vô nghiệm
c) $2x^2 + 5x + 2 = 0$ <=> $(x+2)(2x+1)=0$ <=> x=-2 hoặc x=-1/2

Bạn lưu ý lần sau khi đăng câu hỏi bạn nên tách các bài với nhau để nhận được câu trả lời sớm nhất nhé

13 tháng 2 2017

a)    3 x 2   +   8 x   +   4   =   0 ;

a = 3; b' = 4; c = 4

Δ ' =   ( b ' ) 2   -   a c   =   4 2   -   3 . 4   =   4   ⇒   √ ( Δ ' )   =   2

Phương trình có 2 nghiệm:

x 1   =   ( - 4   +   2 ) / 3   =   ( - 2 ) / 3 ;     x 2   =   ( - 4   -   2 ) / 3   =   - 2

b)  7 x 2   -   6 √ 2 x   +   2   =   0

a = 7; b' = -3√2; c = 2

Δ '   = ( b ' ) 2   -   a c   =   ( - 3 √ 2 ) 2   -   7 . 2   =   4   ⇒   √ ( Δ ' )   =   2

Phương trình có 2 nghiệm:

x 1   =   ( 3 √ 2   +   2 ) / 7 ;   x 2   =   ( 3 √ 2   -   2 ) / 7