K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2023

a: Xét tứ giác AHBC có

E là trung điểm chung của AB và HC

=>AHBC là hình bình hành

Xét tứ giác AKCB có

D là trung điểm chung của AC và KB

=>AKCB là hình bình hành

b:AHBC là hình bình hành

=>AH//BC và AH=BC

AKCB là hình bình hành

=>AK//CB và AK=CB

AH//BC

AK//BC

mà AH,AK có điểm chung là A

nên H,A,K thẳng hàng

AH=BC

AK=BC

Do đó: AH=AK

H,A,K thẳng hàng

mà AH=AK

nên A là trung điểm của HK

17 tháng 12 2023

a: Xét tứ giác AHBC có

E là trung điểm chung của AB và HC

=>AHBC là hình bình hành

Xét tứ giác ABCK có

D là trung điểm chung của AC và BK

=>ABCK là hình bình hành

b: Ta có: AHBC là hình bình hành

=>AH//BC và AH=BC

Ta có: ABCK là hình bình hành

=>AK//BC và AK=BC

Ta có: AH//BC

AK//BC

HA,AK có điểm chung là A

Do đó: H,A,K thẳng hàng

Ta có: AH=BC

AK=BC

Do đó: AH=AK

mà H,A,K thẳng hàng

nên A là trung điểm của HK

Bài 1:

a: Xét tứ giác AHBC có

E la trung điểm chung của AB và CH

=>AHBC là hình bình hành

Xét tứ giác AKCB có

D là trung điểm chung của AC va KB

=>AKCB là hình bình hành

b: AHBC là hinh bình hanh

=>AH//BC và AH=BC

AKCB là hình bình hành

=>AK//BC và AK=BC

ta có: AH//BC

AK//BC

mà AH,AK có điểm chung là A

nên H,A,K thẳng hàng

Ta có: AK=BC

AH=BC

Do đó: AK=AH

mà H,A,K thẳng hàng

nên A là trung điểm của HK

Bài 2:

a: Ta có; AE+DE=AD

CF+FB=CB

ma AE=CF và AD=BC

nên DE=BF

Ta có: AM+MB=AB

CN+ND=CD
ma MB=ND va AB=CD

nên AM=CN

Xét ΔEAM và ΔFCN có

EA=FC

\(\hat{EAM}=\hat{FCN}\) (ABCD là hình bình hành)

AM=CN

Do đó: ΔEAM=ΔFCN

=>EM=FN

Xét ΔEDN và ΔFBM có

ED=FB

\(\hat{EDN}=\hat{FBM}\) (ABCD là hình bình hành)

DN=BM

Do đó: ΔEDN=ΔFBM

=>EN=FM

Xét tứ giác EMFN có

EM=FN

EN=FM

Do đó: EMFN là hình bình hành

b: Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

=>AC cắt EF tại trung điểm của mỗi đường(1)

ta có: EMFN là hình binh hành

=>EF cắt MN tại trung điểm của mỗi đường(2)

Ta có: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(3)

Từ (1),(2),(3) suy ra AC,EF,BD,MN đồng quy

31 tháng 7 2019

Bài 2:

A C D B E H K

Dễ dàng chứng minh \(\Delta\)BEC = \(\Delta\)AEH (c.g.c) và \(\Delta\)CDB = \(\Delta\)ADK

Suy ra HA = BC. và KA = BC từ đó suy ra HA = KA (1)

Do ED là đường trung bình tam giác BAK nên ED // AK (2)

Do ED là đường trung bình tam giác HCA nên ED // AH (3)

Từ (2) và (3) theo tiên đề Ơclit suy ra A, H, K thẳng hàng (4)

Từ (1) và (4) suy ra đpcm.

31 tháng 7 2019

Bài 1:

A B C M K H

Hình như hơi dư thừa nhỉ? BHCK là hình bình hành thì hiển nhiên CH//BK rồi mà. Đúng hay sai thì tùy!

Giải

Dễ dàng chứng minh \(\Delta\)BMH = \(\Delta\)CMK (cạnh huyền - góc nhọn)

Suy ra ^MBH = ^MCK. Mà hai góc này ở vị trị so le trong nên BH // CK (1) và MH = MK 

Xét \(\Delta\)BMK và \(\Delta\)CMH có:

MH = MK (chứng minh trên)

^BMK = ^HMC

BM = CM (do M là trung điểm BC)

Suy ra  \(\Delta\)BMK = \(\Delta\)CMH (c.g.c)

Suy ra ^MBK = ^MCH. Mà hai góc này ở vị trí so le trong nên BK // CH (2)

Từ (1) và (2) suy ra tứ giác BHCK là hình bình hành (đpcm)

28 tháng 6 2018

xét tg HAE và tg CEB:

HE=EC ( gt )

AE=EB (gt )

góc HEA=góc BEC ( đối đỉnh )

=> tg HAE= tg CEB ( c-g-c )

=> HA=BC ( 2 cạnh tương ứng ) ( 1)

=> góc HAE=góc EBC ( 2 góc tương ứng ) (2)

xét tương tự tg AKD và tg CBD ( tự chứng minh 2 tg bằng nhau)

=> AK= BC ( 2 cạnh tương ứng ) ( 3)

=> góc KAD= góc DCB ( 2 cạnh tương ứng ) ( 4)

từ (1) và (2) => HA=AK ( * )

từ (3) và (4 ) => góc HAE + góc BAC = góc KAD = góc ACB + góc ABC + góc BAC = 180 độ ( tổng 3 góc trog hình tg )

                 => H,A,K thẳng hàng ( ** )

từ ( *) và ( ** ) => A là tđ của HK

29 tháng 4 2018

Kết quả hình ảnh cho ho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi H là trung điểm của GB, K là trung điểm của GCa) Chứng minh rằng tứ giác DEHK là hình bình hànhb) Tam giác ABC có điều kiện gì thì tứ giác DEHK là hình chữ nhậtc) Nếu các đường trung tuyến BD và CE vuông góc với nhau thì tứ giác DEHK là hình gì ?

a)

BD là đường trung tuyến của Δ ABC nên D là trung điểm của AC (1)

CE là đường trung tuyến của Δ ABC nên E là trung điểm của AB (2)

Từ (1) và (2) suy ra :

DE là đường trung bình của Δ ABC

=> DE // BC và DE = 1/2 BC

Δ BGC có H là trung điểm của GB và K là trung điểm của GC

suy ra HK là đường trung bình của Δ BGC

=> HK // BC và HK = 1/2 BC

Tứ giác DEHK có DE//BC, HK // BC và DE = HK = 1/2 BC

nên tứ giác

b) DEHK là hình bình hành nên

HG = GD = 1/2 HD và GE = GK = 1/2 EK

Để tứ giác DEHK là hình chữ nhật thì

HD = EK => 1/2 HD = 1/2 EK => GE = GD và GH = GK

GH = GK => 2GH = 2GK => GB = GC

Xét Δ GEB và Δ GDC có

GE = GD Góc EGB = góc DGC GB = GC => ΔGEB = ΔGDC (c.g.c) => BE = CD => 2BE = 2CD => AB = AC => ΔABC cân tại A Vậy để

tứ giác DEHK là hình chữ nhật thì

ΔABC cân tại A

c) BD ⊥ CE => HD ⊥ EK Hình bình hành DEHK có HD ⊥ EK nên DEHK là hình thoi Vậy

nếu các đường trung tuyến BD và CE vuông góc với nhau thì tứ giác DEHK là hình thoi

16 tháng 8 2016

AAi biết chỉ mk vs Nha...