Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hoành độ giao điểm (P) ; (d) tm pt
\(\frac{1}{2}x^2+mx+m-1=0\Leftrightarrow x^2+2mx+2m-2=0\)
\(\Delta'=m^2-\left(2m-2\right)=m^2+2m+2=\left(m+1\right)^2+1>0\)
Vậy (P) cắt (d) tại 2 điểm pb
a, Với m = -1 thì \(\hept{\begin{cases}\left(P\right)y=-x^2\\\left(d\right)y=x-2\end{cases}}\)
Tọa độ giao điểm của (d) và (P) là nghiệm của hệ phương trình :
\(\hept{\begin{cases}y=-x^2\\y=x-2\end{cases}\Leftrightarrow}\hept{\begin{cases}-x^2=x-2\\y=x-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+x-2=0\\y=x-2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}\left(h\right)\hept{\begin{cases}x=-2\\y=-4\end{cases}}}\)
Vậy tọa độ giao điểm (d) và (P) với m = -1 là (1;-1) ; (-2;-4)
b, Phương trình hoành độ giao điểm của (d) và (P) là
\(mx^2=\left(m+2\right)x+m-1\)
\(\Leftrightarrow mx^2-\left(m+2\right)x-m+1=0\)
Vì m khác 0 nên pt trên là pt bậc 2
Khi đó \(\Delta=\left[-\left(m+2\right)\right]^2-4m\left(-m+1\right)\)
\(=m^2+4m+4+4m^2-4m\)
\(=5m^2+4>0\)
Nên pt trên luôn có 2 nghiệm p/b
hay (d) luôn cắt (P) tại 2 điểm phân biệt với m khác 0
\(a,M\in\left(d\right)\Rightarrow a.0+b.2=-2\)
\(\Rightarrow b=-1\)
\(\Rightarrow\left(d\right)ax-y=-2\)
\(\Rightarrow\left(d\right)y=ax+2\)
Hoành độ giao điểm của (d) và (P) là nghiệm của phương trình
\(\frac{x^2}{4}=ax+2\)
\(\Leftrightarrow x^2-4ax-8=0\)(1)
Có \(\Delta'=4a^2+8>0\)
Nên pt (1) luôn có 2 nghiệm phân biệt
=> (d) luôn cắt (P) tại 2 điểm phân biệt A và B
b, Gọi 2 điểm A và B có tọa độ là \(A\left(x_1;y_1\right);B\left(x_2;y_2\right)\)
Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=4a\\x_1x_2=-8\end{cases}}\)
Vì \(A;B\in\left(P\right)\Rightarrow\hept{\begin{cases}y_1=\frac{x_1^2}{4}\\y_2=\frac{x_2^2}{4}\end{cases}}\)
Ta có \(AB=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}\)
\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2+\left(y_1+y_2\right)^2-4y_1y_2}\)
\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2+\left(\frac{x_1^2+x_2^2}{4}\right)^2-4.\frac{x_1^2x_2^2}{4.4}}\)
\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2+\frac{\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2}{4}-\frac{x_1^2x_2^2}{4}}\)
\(=\sqrt{16a^2+32+\frac{\left(16a^2+16\right)^2}{4}-\frac{64}{4}}\)
\(\ge\sqrt{16.0+32+\frac{\left(16.0+16\right)^2}{4}-\frac{64}{4}}=4\sqrt{5}\)
Dấu "=" <=> a = 0
Gọi (d): y = kx + b
Do (d) đi qua M(0; 2) nên b = 2
⇒ (d): y = kx + 2
Phương trình hoành độ giao điểm của (P) và (d):
1/2 x² = kx + 2
⇔ x² = 2kx + 4
⇔ x² - 2kx - 4 = 0
∆' = (-k)² - 1.(-4)
= k² + 4 > 0 với mọi k ∈ R
Vậy (d) luôn cắt (P) tại hai điểm phân biệt A, B