Bài 12*.Cho đa thức f(x) thỏa mãn 2f(x) - x.f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2f(1/2)-1/2f(2)=1/4 và 2f(2)-2f(1/2)=4

=>f(2)=17/6

2f(1/3)-1/3*f(3)=1/9 và 2*f(3)-3*f(1/3)=9

=>f(1/3)=29/27

16 tháng 3 2022

`Answer:`

undefined

18 tháng 6 2021

a) A + x2 - 4xy2 + 2xz - 3y2 = 0

=> A =  -x2 + 4xy2 - 2xz + 3y2

b) B + 5x2 - 2xy = 6x2 + 9xy - y2

=> B = 6x2 + 9xy - y2 - 5x2 + 2xy= x2 + 11xy - y2

c) 3xy - 4y2 - A = x2 - 7xy + 8y2

=> A = 3xy - 4y2 - x2 + 7xy - 8y2 = -12y2 + 10xy - x2

18 tháng 6 2021

Trả lời:

a, A + ( x2 - 4xy2 + 2xz - 3y2 ) = 0 

=> A = - ( x2 - 4xy2 + 2xz - 3y2 ) = - x2 + 4xy2 - 2xz + 3y2

b, B + ( 5x2 - 2xy ) = 6x2 + 9xy - y2 

=> B = 6x2 + 9xy - y2 - ( 5x2 - 2xy ) = 6x2 + 9xy - y2 - 5x2 + 2xy = x2 + 11xy - y2

c, ( 3xy - 4y2 ) - A = x2 - 7xy + 8y2 

=> A = 3xy - 4y2 - ( x2 - 7xy + 8y2 ) = 3xy - 4y2 - x2 + 7xy - 8y2 = 10xy - 12y2 - x2

d, B + ( 4x2y + 5y2 - 3xz + z2 ) = x2 + 11xy - y2 + 4x2y + 5y2 - 3xz + z2 = x2 + 11xy + 4y2 + 4x2y - 3xz + z2 

19 tháng 4 2016

Bài 2:

a)Ta có: 4100​=(22)100=2200

Do 2200<2202

Vậy 4100<2202

9 tháng 4 2019

Ta có 2f(x)-x.f(1/x)=x^2

Với x=2 => 2f(2)-2.f(1/2)=4 (1)

Với x=1/2 => 2 . f(1/2)- 1/2 f(2) = (1/2)^2

               => 2 .f(1/2) -1/2f(2)=1/4(2)

lấy (2)+(1) ta được 3/2 f(2)=17/4  => f(2)=17/6

Tính f(1/3) làm tương tự thay x=3 và 1/3 

T ic k nha

22 tháng 12 2021

Answer:

a) Với \(x=1\Rightarrow y=2\)

\(\Rightarrow\) Điểm \(A\left(1;2\right)\in\) đồ thị hàm số \(\left(d\right)\)

Vậy hai điểm \(O\left(0;0\right);A\left(1;2\right)\) là đồ thị hàm số \(\left(d\right)\)

(Vì phần này tự nhiên không gửi được hình nên là nếu bạn có nhu cầu hình nữa thì nhắn cho mình nhé.)

b) Ta thay \(x=x_P=40\) vào \(\left(d\right)\)

Có: \(y=2.40=80\ne y_P\)

\(\Rightarrow\) Điểm \(P\left(40;20\right)\in\) đồ thị hàm số \(\left(d\right)\)

26 tháng 8 2021

\(b^2=a.c\)\(=>\frac{a}{b}=\frac{b}{c}\)

Đặt : \(\frac{a}{b}=\frac{b}{c}=k\)

Ta có : \(a=b.k\)  

            \(b=c.k\)

\(=>\)\(\frac{a}{c}=\frac{b.k}{c}=\frac{c.k+k}{c}=k^2\left(1\right)\)

\(\left(\frac{a+2012b}{b+2012c}\right)^2=\left(\frac{bk+2012b}{ck+2012c}\right)^2=\left(\frac{b\left(k+2012\right)}{c\left(k+2012\right)}\right)^2=\left(\frac{b}{c}\right)^2=k^2\left(2\right)\)

Từ (1) và (2) \(=>\frac{a}{c}=\left(\frac{a+2012b}{b+2012c}\right)^2\left(đpcm\right)\)

Hok tốt~

27 tháng 11 2021

a) Vì x và y là hai địa lượng tỉ lệ nghịch 

\(y=\frac{a}{x}=a=x.y\)

Thay \(a=2.4\)

Vậy \(a=8\)

b) \(x=\frac{a}{y}\)

c) Vì x là y là hai đại lượng tỉ lệ nghịch

\(x=\frac{a}{y}=x=\frac{a}{y}\)

Thay \(x=\frac{8}{-1}\); Thay \(x=\frac{8}{2}\)

\(\hept{\begin{cases}x=4\\x=8\end{cases}}\)