Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
căn có nghĩa
\(\Leftrightarrow\frac{a}{3}\ge0\)
\(\Leftrightarrow a\ge0\)
b
căn có nghĩa
\(\Leftrightarrow-5a\ge0\)
\(\Leftrightarrow b\le0\left(-5\le0\right)\)
c
căn có nghĩa
\(\Leftrightarrow4-a\ge0\)
\(\Leftrightarrow-a\ge0-4\)
\(\Leftrightarrow-a\ge-4\)
\(\Leftrightarrow a\le4\)
d
căn có nghĩa
\(\Leftrightarrow3a+7\ge0\)
\(\Leftrightarrow a\ge-\frac{7}{3}\)
+ Ta có:
2√6−√5=2(√6+√5)(√6−√5)(√6+√5)26−5=2(6+5)(6−5)(6+5)
=2(√6+√5)(√6)2−(√5)2=2(√6+√5)6−5=2(6+5)(6)2−(5)2=2(6+5)6−5
=2(√6+√5)1=2(√6+√5)=2(6+5)1=2(6+5).
+ Ta có:
3√10+√7=3(√10−√7)(√10+√7)(√10−√7)310+7=3(10−7)(10+7)(10−7)
=3(√10−√7)(√10)2−(√7)2=3(10−7)(10)2−(7)2=3(√10−√7)10−7=3(10−7)10−7
=3(√10−√7)3=√10−√7=3(10−7)3=10−7.
+ Ta có:
1√x−√y=1.(√x+√y)(√x−√y)(√x+√y)1x−y=1.(x+y)(x−y)(x+y)
=√x+√y(√x)2−(√y)2=√x+√yx−y=x+y(x)2−(y)2=x+yx−y
+ Ta có:
2ab√a−√b=2ab(√a+√b)(√a−√b)(√a+√b)2aba−b=2ab(a+b)(a−b)(a+b)
=2ab(√a+√b)(√a)2−(√b)2=2ab(√a+√b)a−b=2ab(a+b)(a)2−(b)2=2ab(a+b)a−b.
\(\frac{2}{\sqrt{6}-\sqrt{5}}=\frac{2\left(\sqrt{6}+\sqrt{5}\right)}{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}=\frac{2\left(\sqrt{6}+\sqrt{5}\right)}{6-5}=2\left(\sqrt{6}+\sqrt{5}\right)\)
\(\frac{3}{\sqrt{10}+\sqrt{7}}=\frac{3\left(\sqrt{10}-\sqrt{7}\right)}{\left(\sqrt{10}-\sqrt{7}\right)\left(\sqrt{10}+\sqrt{7}\right)}=\frac{3\left(\sqrt{10}-\sqrt{7}\right)}{10-7}=\sqrt{10}-\sqrt{7}\)
\(\frac{1}{\sqrt{x}-\sqrt{y}}=\frac{\sqrt{x}+\sqrt{y}}{x-y}\)
\(\frac{2ab}{\sqrt{a}-\sqrt{b}}=\frac{2ab\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\)
(do xy > 0 (gt) nên đưa thừa số xy vào trong căn để khử mẫu)
#Học tốt!!!
\(ab\cdot\sqrt{\dfrac{a}{b}}=a\cdot\sqrt{ab}\)
\(\dfrac{a}{b}\cdot\sqrt{\dfrac{b}{a}}=\dfrac{\sqrt{a\cdot b}}{b}\)
\(\sqrt{\dfrac{1}{b}+\dfrac{1}{b^2}}=\dfrac{\sqrt{b+1}}{b}\)
\(\sqrt{\dfrac{9\cdot a^3}{36\cdot b}}=\dfrac{\sqrt{a^3\cdot b}}{2\cdot b}\)
\(3\cdot x\cdot y\cdot\sqrt{\dfrac{2}{x\cdot y}}=3\cdot\sqrt{2\cdot x\cdot y}\)
a) \sqrt{-9a}-\sqrt{9+12 a+4 a^{2}}−9a−9+12a+4a2
=\sqrt{-9 a}-\sqrt{3^{2}+2.3 .2 a+(2 a)^{2}}=−9a−32+2.3.2a+(2a)2
=\sqrt{3^{2} \cdot(-a)}-\sqrt{(3+2 a)^{2}}=32⋅(−a)−(3+2a)2
=3 \sqrt{-a}-|3+2 a|=3−a−∣3+2a∣
Thay a=-9a=−9 ta được:
3 \sqrt{9}-|3+2 \cdot(-9)|=3.3-15=-639−∣3+2⋅(−9)∣=3.3−15=−6.
b) Điều kiện: m \neq 2m=2
1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}1+m−23mm2−4m+4
=1+\dfrac{3 m}{m-2} \sqrt{m^{2}-2.2 \cdot m+2^{2}}=1+m−23mm2−2.2⋅m+22
=1+\dfrac{3 m}{m-2} \sqrt{(m-2)^{2}}=1+m−23m(m−2)2
=1+\dfrac{3 m|m-2|}{m-2}=1+m−23m∣m−2∣
+) m>2m>2, ta được: 1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}=1+3 m1+m−23mm2−4m+4=1+3m. (1)(1)
+) m<2m<2, ta được: 1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}=1-3 m1+m−23mm2−4m+4=1−3m. (2)(2)
Với m=1,5<2m=1,5<2. Thay vào biểu thức (2)(2) ta có: 1-3 m=1-3.1,5=-3,51−3m=1−3.1,5=−3,5
Vậy giá trị biểu thức tại m=1,5m=1,5 là -3,5−3,5.
c) \sqrt{1-10 a+25 a^{2}}-4a1−10a+25a2−4a
=\sqrt{1-2.1 .5 a+(5 a)^{2}}-4 a=1−2.1.5a+(5a)2−4a
=\sqrt{(1-5a)^{2}}-4 a=(1−5a)2−4a
=|1-5 a|-4 a=∣1−5a∣−4a
+) Với a <\dfrac{1}{5}a<51, ta được: 1-5a-4 a=1-9a1−5a−4a=1−9a. (3)(3)
+) Với a \ge \dfrac{1}{5}a≥51, ta được: 5 a-1-4 a=a-15a−1−4a=a−1. (4)(4)
Vì a=\sqrt{2}>\dfrac{1}{5}a=2>51. Thay vào biểu thức (4)(4) ta có: a-1=\sqrt{2}-1a−1=2−1.
Vậy giá trị của biểu thức tại a=\sqrt{2}a=2 là \sqrt{2}-12−1.
d) 4 x-\sqrt{9 x^{2}+6 x+1}4x−9x2+6x+1
=4 x-\sqrt{(3 x)^{2}+2.3 x+1}=4 x-\sqrt{(3 x+1)^{2}}=4x−(3x)2+2.3x+1=4x−(3x+1)2
=4 x-|3x+1|=4x−∣3x+1∣
+) Với 3x+1 \geq 03x+1≥0 \Leftrightarrow⇔ x \ge -\dfrac{1}{3}x≥−31, ta có: 4 x-(3x+1)=4 x-3 x-1 =x-14x−(3x+1)=4x−3x−1=x−1. (5)(5)
+) Với 3x+1<03x+1<0 \Leftrightarrow⇔ x <-\dfrac{1}{3}x<−31, ta có: 4 x+(3 x+1)=4 x+3x+1=7x+14x+(3x+1)=4x+3x+1=7x+1. (6)(6)
Vì x=-\sqrt{3}<-\dfrac{1}{3}x=−3<−31. Thay vào biểu thức (6)(6), ta có: 7 x+1=7 .(-\sqrt{3})+1=-7 \sqrt{3}+17x+1=7 .(−3)+1=−73+1.
Giá trị của biểu thức tại x=-\sqrt{3}x=−3 là -7 \sqrt{3}+1−73+1.
+ Ta có:
3√3+1=3(√3−1)(√3+1)(√3−1)=3√3−3.1(√3)2−1233+1=3(3−1)(3+1)(3−1)=33−3.1(3)2−12
=3√3−33−1=3√3−32=33−33−1=33−32.
+ Ta có:
2√3−1=2(√3+1)(√3−1)(√3+1)=2(√3+1)(√3)2−1223−1=2(3+1)(3−1)(3+1)=2(3+1)(3)2−12
=2(√3+1)3−1=2(√3+1)2=√3+1=2(3+1)3−1=2(3+1)2=3+1.
+ Ta có:
2+√32−√3=(2+√3).(2+√3)(2−√3)(2+√3)=(2+√3)222−(√3)22+32−3=(2+3).(2+3)(2−3)(2+3)=(2+3)222−(3)2
=22+2.2.√3+(√3)24−3=22+2.2.3+(3)24−3=4+4√3+31=(4+3)+4√31=4+43+31=(4+3)+431
=7+4√31=7+4√3=7+431=7+43.
+ Ta có:
b3+√b=b(3−√b)(3+√b)(3−√b)b3+b=b(3−b)(3+b)(3−b)
=b(3−√b)32−(√b)2=b(3−√b)9−b;(b≠9)=b(3−b)32−(b)2=b(3−b)9−b;(b≠9).
+ Ta có:
p2√p−1=p(2√p+1)(2√p−1)(2√p+1)p2p−1=p(2p+1)(2p−1)(2p+1)
=p(2√p+1)(2√p)2−12=p(2√p+1)4p−1=p(2p+1)(2p)2−12=p(2p+1)4p−1=2p√p+p4p−1
Bài 51 trang 30 SGK Toán 9 tập 1 - loigiaihay.com
#Ye Chi-Lien
\(\frac{3}{\sqrt{3}+1}=\frac{3\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{3\sqrt{3}-3}{3-1}=\frac{3\sqrt{3}-3}{2}\)
\(\frac{2}{\sqrt{3}-1}=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=\frac{2\left(\sqrt{3}+1\right)}{3-1}=\sqrt{3}-1\)
\(\frac{2+\sqrt{3}}{2-\sqrt{3}}=\frac{\left(2+\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3}=\left(2+\sqrt{3}\right)^2=4+4\sqrt{3}+3=7+4\sqrt{3}\)
\(\frac{b}{3+\sqrt{b}}=\frac{b\left(3-\sqrt{b}\right)}{\left(3+\sqrt{b}\right)\left(3-\sqrt{b}\right)}=\frac{b\left(3-\sqrt{b}\right)}{9-b}\)
\(\frac{p}{2\sqrt{p}-1}=\frac{p\left(2\sqrt{p}+1\right)}{\left(2\sqrt{p}-1\right)\left(2\sqrt{b}+1\right)}=\frac{p\left(2\sqrt{b}+1\right)}{4p-1}\)
a) a) Biến đổi vế trái thành 32√6+23√6−42√6326+236−426 và làm tiếp.
b) Biến đổi vế trái thành (√6x+13√6x+√6x):√6x(6x+136x+6x):6x và làm tiếp
Rút gọn các biểu thức sau với x≥0x≥0:
a) 2\(\sqrt{3x}\)-4\(\sqrt{3x}\)+27-3\(\sqrt{3x}\)=27-5\(\sqrt{3x}\)
b)3\(\sqrt{2x}\)-5\(\sqrt{8x}\)+7\(\sqrt{18x}\)+28
=3\(\sqrt{2x}\)-10\(\sqrt{2x}\)+21\(\sqrt{2x}\)+28
=14\(\sqrt{2x}\)+28=14(\(\sqrt{2x}\)+2)
a) \(2\sqrt{3x}-4\sqrt{3x}+27-3\sqrt{3x}\)
\(=\left(2\sqrt{3x}-4\sqrt{3x}-3\sqrt{3x}\right)+27\)
\(=-5\sqrt{3x}+27\)
\(\frac{5}{\sqrt{10}}=\frac{5\sqrt{10}}{10}=\frac{\sqrt{10}}{2}\)
\(\frac{5}{2\sqrt{5}}=\frac{10\sqrt{5}}{20}=\frac{\sqrt{5}}{2}\)
\(\frac{1}{3\sqrt{20}}=\frac{3\sqrt{20}}{180}=\frac{\sqrt{20}}{60}=\frac{2\sqrt{5}}{60}=\frac{\sqrt{5}}{30}\)
\(\frac{2\sqrt{2}+2}{5\sqrt{2}}=\frac{10\sqrt{2}\left(\sqrt{2}+1\right)}{50}=\frac{20+10\sqrt{2}}{50}=\frac{10\left(2+\sqrt{2}\right)}{50}=\frac{2+\sqrt{2}}{5}\)
\(\frac{y+b\sqrt{y}}{b\sqrt{y}}=\frac{y\left(\sqrt{y}+b\right)}{by}=\frac{\sqrt{y}+b}{b}\)
+ Ta có:
5√10=5.√10√10.√10=5√10(√10)2=5√1010510=5.1010.10=510(10)2=51010
=5.√105.2=5.105.2=√102=102.
+ Ta có:
52√5=5.√52√5.√5=5√52.(√5.√5)=5√52(√5)2525=5.525.5=552.(5.5)=552(5)2
=5√52.5=√52=552.5=52.
+ Ta có:
13√20=1.√203√20.√20=√203.(√20.√20)=√203.(√20)21320=1.20320.20=203.(20.20)=203.(20)2
=√203.20=√22.560=2√560=2√52.30=√530=203.20=22.560=2560=252.30=530.
+ Ta có:
(2√2+2)5.√2=(2√2+2).√25√2.√2=2√2.√2+2.√25.(√2)2(22+2)5.2=(22+2).252.2=22.2+2.25.(2)2
=2.2+2√25.2=2(2+√2)5.2=2+√25=2.2+225.2=2(2+2)5.2=2+25.
+ Ta có:
y+b√yb√y=(y+b√y).√yb√y.√y=y√y+b√y.√yb.(√y)2y+byby=(y+by).yby.y=yy+by.yb.(y)2
=y√y+b(√y)2by=y√y+byby=yy+b(y)2by=yy+byby
=y(√y+b)b.y=√y+bb=y(y+b)b.y=y+bb.
Cách khác:
y+b√yb√y=(√y)2+b√yb√yy+byby=(y)2+byby=√y(√y+b)b√y=√y+bb
Nguồn : Bài 50 trang 30 SGK Toán 9 tập 1 - loigiaihay.com
#Ye Chi-Lien
a, \(\sqrt{\left(2x-1\right)^2}=3\Leftrightarrow\left|2x-1\right|=3\)
Với \(x\ge\frac{1}{2}\)pt có dạng : \(2x-1=3\Leftrightarrow x=2\)( tm )
Với \(x< \frac{1}{2}\)pt có dạng : \(-2x+1=3\Leftrightarrow x=-1\)( tm )
Vậy tập nghiệm của pt là S = { -1 ; 2 }
b, \(\frac{5}{3}\sqrt{15x}-\sqrt{15x}-2=\frac{1}{3}\sqrt{15x}\)ĐK : \(x\ge0\)
\(\Leftrightarrow\frac{2}{3}\sqrt{15x}-2=\frac{1}{3}\sqrt{15x}\Leftrightarrow\frac{1}{3}\sqrt{15x}=2\)
\(\Leftrightarrow\sqrt{15x}=6\)bình phương 2 vế : \(\Leftrightarrow15x=36\Leftrightarrow x=\frac{36}{15}=\frac{12}{5}\)( tm )
Vậy tập nghiệm của pt là S = { 12/5 }
a) √2x+7
Để √2x+7 có nghĩa⇔2x+7≥0
⇔2x≥-7
⇔x≥−7/2
b) √−3x+4
Để √−3x+4 có nghĩa ⇔-3x+4≥≥0
⇔-3x≥-4
⇔x≤4/3
c)√1/−1+x1
Để √1/−1+x có nghĩa ⇔1/−1+x≥0
⇔-1+x>0
⇔x>1
d) √1+x21+x2
Ta có x2+1≥≥1>0;∀x∈R
Vậy x∈R
+a) \(\sqrt{2x+7}\) co nghia khi 2x+7≥0⇒x≥\(\dfrac{-7}{2}\)
b) \(\sqrt{-3x+4}\) co nghia khi -3x+4≥0⇒x≤\(\dfrac{4}{3}\)
c) \(\sqrt{\dfrac{1}{-1+x}}\) cp nghia khi \(\dfrac{1}{-1+x}\)≥0 ⇒-1+x>0⇒x>1
d) \(\sqrt{1+x^2}\) co nghia khi 1+x2 ≥0 ma \(x^2\)≥0⇒\(x^2\) + 1≥1>0 vs moi x