Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 6=23 và (2.3)=1
Ta có:
n^3+3n^2+n=n^2(n+1)+2n(n+1) =n(n+1)(n+2)
Nhận thấy n(n+1)(n+2) là tích 3 số nguyên liên tiếp
suy ra Tồn tại 1 số chia hết cho 2 (vì n(n+1) là tích 2 số nguyên liên tiếp) (với mọi số nguyên n)
Tồn tại 1 số chia hết cho 3 (vì n(n+1)(n+2) là tích 3 số nguyên liên tiếp)
suy ra n(n+1)(n+2) chia hết cho 2,3
hay n^3+3n^2+2n chia hết cho 6
suy ra ĐPCM
Bài 2:
Gọi số cần tìm là A
*2,3,4,5,6 có BCNN là 60
(A - 1) chia hết cho 2,3,4,5,6 nên A = 60a (a là số tự nhiên khác 0)
=> A = 60a + 1
*A chia hết cho 7 nên: A = 60a+1 = 7b
=> 7b = 56a + 4a + 1 = 7.8a + 4a + 1
=> b = 8a + (4a+1)/7
Vì b nguyên dương nên (4a+1) chia hết cho 7
A nhỏ nhất khi a nhỏ nhất thỏa (4a+1) chia hết cho 7
=> a = 5
=> A = 301
**Dạng chung:
Từ trên ta có 4a+1 = 7c = 8c - c
=> a = 2c - (c+1)/4
=> c+1 chia hết cho 4
=> c+1 = 4k
=> c = 4k-1
Thay trở lại ta có:
a = 2c - (c+1)/4 = 8k-2 - (4k-1+1)/4 = 8k-2 -k = 7k-2
A = 60a + 1 = 60(7k-2) + 1 = 420k - 119
Công thức chung là A = 420k - 119 với k nguyên dương
Rõ ràng k nhỏ nhất là 1 nên ứng với A = 301
Mình xin lỗi , mình xin chịu lúc nào mình nghĩ ra thì mình sẽ giúp cậu
bài 2)
ta có
= 2015 +2015^2+2015^3+2015^4+2015^5+2015^6
= (2015 +2015^2)+(2015^3+2015^4)+(2015^5+2015^6)
= (2015.1+2015.2015)+ ... +(2015^5.1+2015^5.2015)
= 2015.2016+...+2015^5.2016
= 2016.(2015+2015^3+2015^5) chia hết cho 2016
=> (2015 +2015^2+2015^3+2015^4+2015^5+2015^6) chia het cho 2016