\(x^2-4x+5\)

b,

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2019

a) \(x^2+6x-3\)

\(=x^2+6x+9-12\)

\(=\left(x+3\right)^2-12\ge-12\)

Vậy GTNN của bt là -12\(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

7 tháng 10 2019

b) \(-x^2+4x+3\)

\(=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-4x+4-7\right)\)

\(=-\left[\left(x-2\right)^2-7\right]\)

\(=-\left(x-2\right)^2+7\le7\)

Vậy GTLN của bt là 7\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Câu 1: 

a: \(C=a^2+b^2=\left(a+b\right)^2-2ab=23^2-2\cdot132=265\)

b: \(D=x^3+y^3+3xy\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)

\(=1-3xy+3xy=1\)

22 tháng 10 2021

\(1,a,A=x^2-6x+25\)

\(=x^2-2.x.3+9-9+25\)

\(=\left(x-3\right)^2+16\)

Ta có :

\(\left(x-3\right)^2\ge0\)Với mọi x

\(\Rightarrow\left(x-3\right)^2+16\ge16\)

Hay \(A\ge16\)

\(\Rightarrow A_{min}=16\)

\(\Leftrightarrow x=3\)

22 tháng 10 2021

\(b,B=4x^2+4x-2\)

\(B=4x^2+4x+1-3\)

\(B=\left(4x^2+4x+1\right)-3\)

\(B=\left(2x+1\right)^2-3\)

Ta có : 

\(\left(2x+1\right)^2\ge0\)với mọi x

\(\Rightarrow\left(2x+1\right)^2-3\ge-3\)

\(\Leftrightarrow B\ge-3\)

\(\Rightarrow B_{min}=-3\)

\(\Leftrightarrow x=-\frac{1}{2}\)

15 tháng 8 2020

BÀI 1:

\(A=\left(x-10\right)^2+103\)

Có:    \(\left(x-10\right)^2\ge0\forall x\)

=>   \(A\ge103\)

DẤU "=" XẢY RA <=>   \(\left(x-10\right)^2=0\Rightarrow x=10\)

\(B=\left(2x+1\right)^2-6\)

Có:   \(\left(2x+1\right)^2\ge0\forall x\)

=>   \(B\ge-6\)

DẤU "=" XẢY RA <=>   \(\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)

BÀI 3:

a) \(A=y^4+y^3-y^2-2y-\left(y^4+y^3+y^2-2y^2-2y-2\right)\)

\(A=y^4+y^3-y^2-2y-y^4-y^3+y^2+2y+2\)

\(A=2\)

b)   \(B=\left(2x\right)^3+3^3-8x^3+2\)

\(B=29\)

15 tháng 8 2020

Bài 1.

A = x2 - 20x + 103

A = ( x2 - 20x + 100 ) + 3

A = ( x - 10 )2 + 3 ≥ 3 ∀ x

Đẳng thức xảy ra <=> x - 10 = 0 => x = 10

=> MinA = 3 <=> x = 10

B = 4x2 + 4x - 5

B = ( 4x2 + 4x + 1 ) - 6

B = ( 2x + 1 )2 - 6 ≥ -6 ∀ x

Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MinB = -6 <=> x = -1/2

Bài 2.

A = -x2 + 8x - 21

A = -x2 + 8x - 16 - 5

A = -( x2 - 8x + 16 ) - 5

A = -( x - 4 )2 - 5 ≤ -5 ∀ x

Đẳng thức xảy ra <=> x - 4 = 0 => x = 4

=> MaxA = -5 <=> x = 4

B = lỗi đề :>

Bài 3.

a) y( y3 + y2 - y - 2 ) - ( y2 - 2 )( y2 + y + 1 )

= y4 + y3 - y2 - 2y - ( y4 + y3 + y2 - 2y2 - 2y - 2 )

= y4 + y3 - y2 - 2y - y4 - y3 - y2 + 2y2 + 2y + 2

= 2 ( đpcm )

b) ( 2x + 3 )( 4x2 - 6x + 9 ) - 2( 4x3 - 1 )

= ( 2x )3 + 27 - 8x3 + 2

= 8x3 + 27 - 8x3 + 2

= 29 ( đpcm )

28 tháng 8 2018

mk gợi ý, phần còn lại tự làm 

a)  \(A=x^2+2x+5=\left(x+1\right)^2+4\ge4\)

b) \(B=4x^2+4x+11=\left(2x+1\right)^2+10\ge10\)

c)  \(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

d)  \(D=x^2-2x+y^2-4y+7=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\)

e)  \(E=x^2-4xy+5y^2+10x-22y+28=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

28 tháng 8 2018

a) A = x2 + 2x + 5 

    = x2 + 2x + 1 + 4

    = ( x + 1 )2  + 4

Nhận xét :

( x + 1 )2 > 0 với mọi x 

=> ( x + 1 )2 + 4 > 4 

=> A > 4 

=> A min = 4

Dấu " = " xảy ra khi : ( x + 1 )2  =  0

                                  => x + 1 = 0

                                  => x = - 1

Vậy A min = 4 khi x = - 1

b) B = 4x2 + 4x + 11

= ( 2x )2 + 4x + 1 + 10

= ( 2x + 1 )2 + 10

Nhận xét :

( 2x + 1 )2 > 0 với mọi x

=> ( 2x + 1 )2 + 10 > 10

=> B  >  10

=> B min = 10

Dấu " = " xảy ra khi : ( 2x + 1 )2 = 0

                               => 2x + 1 = 0

                                => x = \(\frac{-1}{2}\)

Vậy Bmin = 10 khi x = \(\frac{-1}{2}\)

c) C = ( x - 1 ) ( x + 2 ) ( x + 3 ) ( x + 6 )

       = [ ( x - 1 ) ( x + 6 ) ] [ ( x + 2 ) ( x + 3 ) ]

        = ( x2 + 5x - 6 ) (  x2 + 5x + 6 )

       = ( x2 + 5x ) 2 - 62

        = ( x2  + 5x )2 - 36

Nhận xét : 

( x2 + 5x )2 > 0 với mọi x

=> ( x2 + 5x )2 - 36 > - 36

=> C > - 36

=> C min = - 36

Dấu " = " xảy ra khi : ( x2 + 5x )2 = 0

                               => x2 + 5x = 0

                               => x ( x + 5 ) = 0

                               => \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\)

                              => \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy C min = - 36 khi x = 0 hoặc x = - 5

d) D = x2 - 2x + y2 - 4y + 7

        = ( x2 - 2x + 1 ) + ( y2 - 4x + 4 ) + 2

        = ( x - 1 )2 + ( y - 2 )2 + 2

Nhận xét :

( x - 1 )2 > 0 với mọi x

( y - 2 )2 > 0 với mọi y

=> ( x - 1 )2 + ( y - 2 )2 > 0 

=> ( x - 1 )2 + ( y - 2 )2 + 2  >  2

=> D > 2

=> D min = 2

Dấu " = " xảy ra khi :  \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\) 

                               => \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\)

                               => \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy D min = 2 khi x = 1 và y = 2

a: \(A=2x^2-2xy-y^2+2xy=2x^2-y^2\)

\(=2\cdot\dfrac{4}{9}-\dfrac{1}{9}=\dfrac{7}{9}\)

b: \(B=5x^2-20xy-4y^2+20xy=5x^2-4y^2\)

\(=5\cdot\dfrac{1}{25}-4\cdot\dfrac{1}{4}\)

=1/5-1=-4/5

\(C=x^3+6x^2+12x+8=\left(x+2\right)^3=\left(-9\right)^3=-729\)

d: \(D=20x^3-10x^2+5x-20x^2+10x+4\)

\(=20x^3-30x^2+15x+4\)

\(=20\cdot5^3-30\cdot5^2+15\cdot2+4=1784\)

22 tháng 10 2018

a/ \(3x+3y-4x-4y=3\left(x+y\right)-4\left(x+y\right)=\left(x+y\right)\left(3-4\right)=-1\left(x+y\right)\)

b/ \(7x\left(x-y\right)-\left(y-x\right)=7x\left(x-y\right)+\left(x-y\right)=\left(x-y\right)\left(7x+1\right)\)

c/ \(5x\left(1-x\right)+\left(x-1\right)=5x\left(1-x\right)-\left(1-x\right)=\left(1-x\right)\left(5x-1\right)\)

d/ \(4x\left(x-y\right)+3\left(x-y\right)^2=\left(x-y\right)\left(4x+3x-3y\right)=\left(x-y\right)\left(7x-3y\right)\)

e/ \(4x\left(x-y\right)+3\left(y-x\right)^2=4x\left(x-y\right)+3\left(x-y\right)^2=\left(x-y\right)\left(4x+3x-3y\right)=\left(x-y\right)\left(7x-3y\right)\)

g/ \(x^2+8x+7=x^2+x+7x+7=x\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(x+7\right)\)

h/ \(x^2-6x-16=x^2+2x-8x-16=x\left(x+2\right)-8\left(x+2\right)=\left(x+2\right)\left(x-8\right)\)

i/ \(4x^2-8x+3=4x^2-2x-6x+3=2x\left(2x-1\right)-3\left(2x-1\right)=\left(2x-1\right)\left(2x-3\right)\)

k/ \(3x^2-11x+6=3x^2-9x-2x+6=3x\left(x-3\right)-2\left(x-3\right)=\left(x-3\right)\left(3x-2\right)\)

Bài 1: Rút gọn biểu thức a. (5+3x)(x-2)-3(x+3)\(^2\) b. (x\(^2\)-1)(x+2)-(x-2)(x\(^2\)+2x+4) Bài 2: Phân tích đa thức thành nhân tử a. (x+y)\(^2\)+(x\(^2\)-y\(^2\)) b. -4x\(^2\)+25+4xy-y\(^2\) c. x\(^2\)-2xy+y\(^2\)-z\(^2\)+2zt-t\(^2\) d. x\(^2\)-x-12 e. 2x\(^2\)+x-6 f. 3x\(^2\)+2x-5 g. x\(^3\)+2x\(^2\)-3 Bài 3: Tìm GTNN của biểu thức A,B và GTLN của biểu thức M,N a) A= x\(^2\)+4x+9 b) B= 2x\(^2\)-20x+53 c) M= 1+6x-x\(^2\) d) N=...
Đọc tiếp

Bài 1: Rút gọn biểu thức

a. (5+3x)(x-2)-3(x+3)\(^2\)

b. (x\(^2\)-1)(x+2)-(x-2)(x\(^2\)+2x+4)

Bài 2: Phân tích đa thức thành nhân tử

a. (x+y)\(^2\)+(x\(^2\)-y\(^2\))

b. -4x\(^2\)+25+4xy-y\(^2\)

c. x\(^2\)-2xy+y\(^2\)-z\(^2\)+2zt-t\(^2\)

d. x\(^2\)-x-12

e. 2x\(^2\)+x-6

f. 3x\(^2\)+2x-5

g. x\(^3\)+2x\(^2\)-3

Bài 3: Tìm GTNN của biểu thức A,B và GTLN của biểu thức M,N

a) A= x\(^2\)+4x+9

b) B= 2x\(^2\)-20x+53

c) M= 1+6x-x\(^2\)

d) N= -x\(^2\)-y\(^2\)+xy+2x+2y

Bài 4: Tìm số

a) Tìm a để x\(^4\)-x\(^3\)+6x\(^2\)-x+a chia hết cho x\(^2\)-x+5

b) Tìm giái trị nguyên của n để 3n\(^3\)+10n\(^2\)-5 chia hết cho 3n+1

Bài 8: Tính giá trị của biểu thức

a) A= x\(^3\)-y\(^3\)-3xy với x-y=1

b) B= x\(^4\)+y\(^4\) với x,y là các số dương thỏa xy= 5, x\(^2\)+y\(^2\)=18

c) C= x\(^3\)-3xy(x-y)-y\(^3\)-x\(^2\)+2xy-y\(^2\) với x-y=7

d) D=x\(^{2013}\)-12x\(^{2012}\)+12x\(^{2011}\)-...+12x\(^3\)-12x\(^2\)+12x-2013 với x

Ai biết bài nào thì giải hộ em với ạ TvT

2
21 tháng 10 2019

Bài 3:

a) ta có: \(A=x^2+4x+9\)

\(=x^2+4x+4+5=\left(x+2\right)^2+5\)

Ta có: \(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+5\ge5\forall x\)

Dấu '=' xảy ra khi

\(\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy: GTNN của đa thức \(A=x^2+4x+9\) là 5 khi x=-2

b) Ta có: \(B=2x^2-20x+53\)

\(=2\left(x^2-10x+\frac{53}{2}\right)\)

\(=2\left(x^2-10x+25+\frac{3}{2}\right)\)

\(=2\left[\left(x-5\right)^2+\frac{3}{2}\right]\)

\(=2\left(x-5\right)^2+2\cdot\frac{3}{2}\)

\(=2\left(x-5\right)^2+3\)

Ta có: \(\left(x-5\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-5\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-5\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi

\(2\left(x-5\right)^2=0\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)

Vậy: GTNN của đa thức \(B=2x^2-20x+53\) là 3 khi x=5

c) Ta có : \(M=1+6x-x^2\)

\(=-x^2+6x+1\)

\(=-\left(x^2-6x-1\right)\)

\(=-\left(x^2-6x+9-10\right)\)

\(=-\left[\left(x-3\right)^2-10\right]\)

\(=-\left(x-3\right)^2+10\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-3\right)^2+10\le10\forall x\)

Dấu '=' xảy ra khi

\(-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy: GTLN của đa thức \(M=1+6x-x^2\) là 10 khi x=3

21 tháng 10 2019

Bài 2:

a) \(\left(x+y\right)^2+\left(x^2-y^2\right)\)

\(=\left(x+y\right)^2+\left(x-y\right).\left(x+y\right)\)

\(=\left(x+y\right).\left(x+y+x-y\right)\)

\(=\left(x+y\right).2x\)

c) \(x^2-2xy+y^2-z^2+2zt-t^2\)

\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)

\(=\left(x-y\right)^2-\left(z-t\right)^2\)

\(=\left[x-y-\left(z-t\right)\right].\left(x-y+z-t\right)\)

\(=\left(x-y-z+t\right).\left(x-y+z-t\right)\)

Chúc bạn học tốt!