K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2016

Bài 1:

a) 571999 = 571996 . 573 = 57499.4 . ( ....3) = (...1) . (....3) = (....3)

Vậy 571999 có chữ số tận cùng là 3

b) 931999 = 931996 . 933 = 93499.4 . (...7) = (....1) . (...7) = (...7)

Vậy 931999 có chữ số tận cùng là 7

Bài 2 

A = 9999931999 - 5555571997 chia hết cho 5

=> A = ( 9999931996 . 9999933 ) - ( 5555571996 . 555557 ) chia hết cho 5

=> A =  [ 999993499.4 . (....7) ] - [ 555557499.4 . (....7) chia hết cho 5

=>  A = [ (....1 ) .(...7) ] - [ (...1) . (...7) ] chia hết cho 5

=>  A  = (...7) - (...7) chia hết cho 5

=> A   =  (...0) chia hết cho 5 (đpcm)

Ai k mik mik k lại

vggysqfyge32wfbhu334xft799nbr45445fk0pnr5gtrgđsyhmjlkmk;kmffed

23 tháng 2 2020

vovyfsboiviuqgufgbfvoeu

18 tháng 5 2017

Bài 3:

a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)

2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)

2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)

3A = \(1-\frac{1}{2^6}\)

=> 3A < 1 

=> A < \(\frac{1}{3}\)(đpcm)

b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)

4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)       (1)

Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)

3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)

4B = \(3-\frac{1}{3^{99}}\)

=> 4B < 3

=> B < \(\frac{3}{4}\)   (2)

Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)

18 tháng 5 2017

bài 1:

5n+7 chia hết cho 3n+2

=> [3(5n+7) - 5(3n + 2)] chia hết cho 3n+2

=> (15n + 21 - 15n - 10) chia hết cho 3n+2

=> 11 chia hết cho 3n + 2

=> 3n + 2 thuộc Ư(11) = {1;-1;11;-11}

Ta có bảng:

3n + 21-111-11
n-1/3 (loại)-1 (chọn)3 (chọn)-13/3 (loại)

Vậy n = {-1;3}

Bài 1 : Cho A = \(\frac{1}{2}\)+   \(\frac{1}{3}\) +  \(\frac{1}{4}\) + ....................... + \(\frac{1}{308}\) +  \(\frac{1}{309}\)                 B + \(\frac{308}{1}+\)\(\frac{307}{2}+\)\(\frac{306}{3}+\)..................  \(+\frac{3}{306}\)\(+\frac{2}{307}\)\(+\frac{1}{308}\)           Tính \(\frac{A}{B}\) Bài 2 :    1. Tìm số tự nhiên có 3 chữ số , biết rằng khi chia số đó cho 25 ; 28 ; 35 thì được các số dư lần lượt...
Đọc tiếp

Bài 1 : Cho A = \(\frac{1}{2}\)+   \(\frac{1}{3}\) +  \(\frac{1}{4}\) + ....................... + \(\frac{1}{308}\) +  \(\frac{1}{309}\)

                 B + \(\frac{308}{1}+\)\(\frac{307}{2}+\)\(\frac{306}{3}+\)..................  \(+\frac{3}{306}\)\(+\frac{2}{307}\)\(+\frac{1}{308}\)

           Tính \(\frac{A}{B}\)

 Bài 2 : 

   1. Tìm số tự nhiên có 3 chữ số , biết rằng khi chia số đó cho 25 ; 28 ; 35 thì được các số dư lần lượt là 5 ; 8 ; 15

   2. Cho a ; b là 2 số chính phương lẻ liên tiếp . Chứng minh rằng : (a-1) . (b-1) chia hết cho 192

Bài 3 : 

   1. Tìm số tự nhiên có 4 chữ số abcd biết nó thỏa mãn cả 3 điều kiện sau:

       a, c là chữ số tận cùng của số M = 5 + 52 + 53 + .......+ 5101

          b, abcd chia hết cho 25

       c, ab = a + b2

   2.Tìm số nguyên tố ab ( a> b>0) sao cho ab - ba là số chính phương


 

1
27 tháng 11 2016

2a)

Gọi số cần tìm là abc.

Để abc = a.

Theo đề bài, ta có: a chia 25 dư 5 => a - 20 chia hết cho 25

a chia 28 dư 8 => a - 20 chia hết cho 28

a chia 35 dư 15 => a - 20 chia hết cho 35

Vậy a - 20 \(\in\)BC (25, 28, 35)

25 = 52

28 = 22 . 7

35 = 5 . 7

BCNN (25, 28, 35) = 52 . 22 . 7 = 700

a - 20 \(\in\)BC (25, 28, 35)

mà BC (25, 28, 35) = B (700)

nên a - 20 \(\in\) B (700) = {0 ; 700 ; 1400 ; 2800 ; ...}

Vậy a \(\in\){680 ; 1380 ; 2780 ; ...}

mà a là số có ba chữ số.

=> abc = 680.

Vậy số tự nhiên cần tìm là 680.

Bài 1:Tính tổng các số sau:a/ \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{2003x2004}\)b/20x15-20x13+20c/\(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{2003x2005}\)Bài 2:Cho A=\(\frac{n-1}{n+4}\)a/Hãy tìm n nguyên để A là một phân số.b/Hãy tìm n nguyên để A là một số nguyên.Bài 3:A/Số nguyên a phải có điều kiện gì để ta có phân số:a/\(\frac{32}{a-1}\)b/\(\frac{a}{5a+30}\)B/Số nguyên a phải có điều kiện gì...
Đọc tiếp

Bài 1:Tính tổng các số sau:

a/ \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{2003x2004}\)

b/20x15-20x13+20

c/\(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{2003x2005}\)

Bài 2:Cho A=\(\frac{n-1}{n+4}\)

a/Hãy tìm n nguyên để A là một phân số.

b/Hãy tìm n nguyên để A là một số nguyên.

Bài 3:

A/Số nguyên a phải có điều kiện gì để ta có phân số:

a/\(\frac{32}{a-1}\)

b/\(\frac{a}{5a+30}\)

B/Số nguyên a phải có điều kiện gì để các phân số sau là số nguyên:

a/\(\frac{a+1}{3}\)

b/\(\frac{a-2}{5}\)

c/\(\frac{a-2}{a-4}\)

C/Tìm số nguyên x để các phân số sau là số nguyên:

a/\(\frac{13}{x-1}\)

b/\(\frac{x+3}{x-2}\)

Bài 4:Cho \(\frac{a}{b}=\frac{c}{d}\)

Hãy chứng minh  rằng \(\frac{2a-3c}{2b-3d}=\frac{2a+3c}{2a+3d}\)

Bài 5:Tính nhanh:

a/465+[58+(-465)+(-38)]

b/217+[43+(-217)+(-23)]

Bài 6:Cho A=\(\frac{10^{2004}+1}{10^{2005}+1}\)và B=\(\frac{10^{2005}+1}{10^{2006}+1}\)

So sánh A và B

Bài 7:Tính giá trị các biểu thức sau:

a/A=(-1)x(-1)2x(-1)3x(-1)4x...x(-1)2011

b/B=70x\(\left(\frac{131313}{565656}+\frac{131313}{727272}+\frac{131313}{909090}\right)\)

 

0
23 tháng 3 2017

câu b lên mạng có thể tìm thấy câu tương tự

Câu a ) 

S = 5 + 52 +..... + 52012

=> S \(⋮5\)

S = 5 + 52 +..... + 52012

S = ( 5 + 53 ) + ( 52 + 54 ) + ........ + ( 52010 + 52012 )

S = 5 ( 1 + 52 ) + 52 ( 1 + 52 ) + ......... + 52010 ( 1 + 52 )

S = 5 x 26 + 52 x 26 + ................ + 52010 x 26

S = 26 ( 5 + 52 + .... + 52010 )

=> S\(⋮26\)

=>\(S⋮13\)( do 26 = 13 x 2 )

Do ( 5 , 13 ) = 1

=> \(S⋮5x13\)

=> \(S⋮65\)