K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 (1,5đ): Phân tích các đa thức sau thành nhân tử:a.2x3 – 8x2 + 8x        b. 2x2 – 3x – 5        c. x2y – x3 – 9y + 9x2 (1đ): Tìm đa thức A biết:A.(2x – 5) = 2x3 – 7×2 + 9x – 103. (3,5đ): Cho biểu thức: P = [(2x – 1)/(x + 3) – x/(3 – x) – (3 – 10x)/(x2 – 9)] : [(x + 2)/(x – 3)]a.Rút gọn P và tìm điều kiện xác định của Pb. Tính giá trị của P khi x2 – 7x + 12 = 0c. Tìm các giá trị nguyên của x để P có giá...
Đọc tiếp

1 (1,5đ): Phân tích các đa thức sau thành nhân tử:

a.2x3 – 8x2 + 8x        b. 2x2 – 3x – 5        c. x2y – x3 – 9y + 9x

2 (1đ): Tìm đa thức A biết:

A.(2x – 5) = 2x3 – 7×2 + 9x – 10

3. (3,5đ): Cho biểu thức: P = [(2x – 1)/(x + 3) – x/(3 – x) – (3 – 10x)/(x2 – 9)] : [(x + 2)/(x – 3)]

a.Rút gọn P và tìm điều kiện xác định của P

b. Tính giá trị của P khi x2 – 7x + 12 = 0

c. Tìm các giá trị nguyên của x để P có giá trị nguyên dương

4. (3,5đ): Cho ∆ ABC có 3 góc nhọn và AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. K là điểm đối xứng với H qua M.

a. Chứng minh: Tứ giác BHCK là hình bình hành

b. Chứng minh: BK ⊥ AB và CK ⊥ AC

c. Gọi I là điểm đối xứng với H qua BC. Chứng minh: Tứ giác BIKC là hình thang cân.

d. BK cắt HI tại G. Tam giác ABC phải có thêm điều kiện gì để tứ giác GHCK là hình thang cân.

5 (0,5đ): Cho các số x, y thỏa mãn điều kiện:

2x2 + 10y2 – 6xy – 6x – 2y + 10 = 0

Hãy tính giá trị của biểu thức: A = [(x + y – 4)2018 – y2018]/x

 

1
12 tháng 12 2018

\(a,2x^3-8x^2+8x\)

\(=2x^3-4x^2-4x^2+8x\)

\(=\left(2x^3-4x^2\right)-\left(4x^2-8x\right)\)

\(=2x\left(x-2\right)-4x\left(x-2\right)\)

\(=\left(2x-4x\right)\left(x-2\right)\)

\(b,2x^2-3x-5=2x^2-5x+2x-5\)

\(=\left(2x^2-5x\right)+\left(2x-5\right)=x\left(2x-5\right)+\left(2x-5\right)\)

\(=\left(x+1\right)\left(2x-5\right)\)

\(c,x^2y-x^3-9y+9x\)

\(=\left(x^2y-x^3\right)-\left(9y-9x\right)\)

\(=x^2\left(y-x\right)-9\left(y-x\right)\)

\(=\left(x^2-9\right)\left(y-x\right)\)

A . PHẦN TRẮC NGHIỆM ( 2đ) Khoanh tròn vào chữ cái đứng trước câu trả lời đúng:Câu 1. Chọn câu đúng trong các cau sauA. Tứ giác có nhiều nhất hai góc tùB. Hình thang có hai cạnh bên bằng nhau là hình thang cânC. Hình thang cân có hai đường chéo cắt nhau tại trung điểm mỗi đường là hình chữ nhật.D. Hình thang có hai đáy bằng nhau là hình bình hànhCâu 2: Giá trị của x2- 2x+ 1 tại x =11 bằng:A.100...
Đọc tiếp

A . PHẦN TRẮC NGHIỆM ( 2đ) Khoanh tròn vào chữ cái đứng trước câu trả lời đúng:

Câu 1. Chọn câu đúng trong các cau sau
A. Tứ giác có nhiều nhất hai góc tù
B. Hình thang có hai cạnh bên bằng nhau là hình thang cân
C. Hình thang cân có hai đường chéo cắt nhau tại trung điểm mỗi đường là hình chữ nhật.
D. Hình thang có hai đáy bằng nhau là hình bình hành

Câu 2: Giá trị của x2- 2x+ 1 tại x =11 bằng:

A.100 B.99 C.121 D.10

Câu 3 : Cho x2 – 1 = 0 thì x bằng:

A. 1 B. (-1) C. 1 và -1 D. Phương án khác

Câu 4: Phân tích đa thức x2 – 4 thành nhân tử bằng:

A. x – 2 B. x +2 C. (x+2)(x-2) D. Phương án khác

Câu 5 : 4x3y : 2xy bằng:

A. 2x2 B. 2xy C. 2x3 D. 2xy
II. PHẦN TỰ LUẬN ( 8đ)

Bài 1: (2điểm)

Rút gọn biểu thức:

a)(x – 3)3 – (x + 2)2

b) (4x2 + 2xy + y2)(2x – y) – (2x + y)(4x2 – 2xy + y2)

Bài 2: (1,5điểm)

Phân tích các đa thức sau thành nhân tử :

a) a2 – ab + a – b

b) x3 – x + 3x2y + 3xy2 – y +y3

Bài 3: (0.5điểm)

Tìm x biết :

x2 – 16 = 0

Bài 3 . ( 3điểm)
Cho hình bình hành ABCD gọi K và I lần lượt là trung điểm của AB và CD.
1. Chứng minh AI=CK

2. AI cắt BD tại M , CK cắt BD tại N .Chứng minh DM=1/3 BD

3. Chứng minh BD , AC và IK đồng quy tại một điểm

Bài 5: (1 điểm)

Tìm giá trị nhỏ nhất của biểu thức M = x2 + 4x + 5


 

1

Bài 5: 

\(M=x^2+4x+5\)

\(=x^2+4x+4+1\)

\(=\left(x+2\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi x=-2

13 tháng 12 2016

Bài 1: Hai đường chéo vuông góc, bằng nhau và cắt nhau tại trung điểm mỗi đường

13 tháng 12 2016

đăng từng câu 1 thôi

20 tháng 9 2020

                                      A B C D M N E

a) Ta có : AB // CD ( do ABCD là hình bình hành )

\(\Rightarrow\)AM // NC \(\left(1\right)\)

Lại có : M là trung điểm của AB \(\Rightarrow AM=\frac{1}{2}AB\left(2\right)\)

              N là trung điểm của DC \(\Rightarrow CN=\frac{1}{2}CD\left(3\right)\)

mà AB = CD ( ABCD là hình bình hành ) \(\left(4\right)\)

Từ \(\left(2\right);\left(3\right);\left(4\right)\Rightarrow AM=CN\left(5\right)\)

Từ \(\left(1\right);\left(5\right)\Rightarrow\)tứ giác AMCN là hình bình hành

b) Ta có : ABCD là hình bình hành (gt)

\(\Rightarrow\)AC cắt BD tại trung điểm của mỗi đường

\(\Rightarrow\)O là trung điểm của BD và O là trung điểm của AC (*)

Ta có : AMCN là hình bình hành (cma)

\(\Rightarrow\)AC cắt MN tại trung điểm của mỗi đường 

\(\Rightarrow\)O là trụng điểm của MN (**)

Từ (*) ; (**) \(\Rightarrow\)AC ; BD ; MN đồng quy

c) Ta có : AM = CN (cmt)

mà \(CN=\frac{1}{2}DC\)(cmt)

\(\Rightarrow AM=\frac{1}{2}DC\)

\(\Rightarrow\)AM là đường trung bình của \(\Delta ECD\) 

        

Bài 1 (2 điểm)Phân tích các đa thức sau thành nhân tử:a)2x3−50x2x3−50xb)x2−6x+9−4y2x2−6x+9−4y2c)x2−7x+10x2−7x+10Bài 2 (1,5 điểm)a.Làm tính chia: (12x6y4+9x5y3−15x2y3):3x2y3(12x6y4+9x5y3−15x2y3):3x2y3b. Rút gọn biểu thức: (x2−2)(1−x)+(x+3)(x2−3x+9)(x2−2)(1−x)+(x+3)(x2−3x+9)Bài 3 (2,5 điểm)Cho biểu thức: A=5x+3−23−x−3x2−2x−9x2−9A=5x+3−23−x−3x2−2x−9x2−9 (với x≠±3x≠±3)a)Rút gọn biểu...
Đọc tiếp

Bài 1 (2 điểm)Phân tích các đa thức sau thành nhân tử:

a)2x3−50x2x3−50x

b)x2−6x+9−4y2x2−6x+9−4y2

c)x2−7x+10x2−7x+10

Bài 2 (1,5 điểm)

a.Làm tính chia: (12x6y4+9x5y3−15x2y3):3x2y3(12x6y4+9x5y3−15x2y3):3x2y3

b. Rút gọn biểu thức: (x2−2)(1−x)+(x+3)(x2−3x+9)(x2−2)(1−x)+(x+3)(x2−3x+9)

Bài 3 (2,5 điểm)Cho biểu thức: A=5x+3−23−x−3x2−2x−9x2−9A=5x+3−23−x−3x2−2x−9x2−9 (với x≠±3x≠±3)

a)Rút gọn biểu thức AA.

b)Tính giá trị của AA khi |x−2|=1|x−2|=1

c)Tìm giá trị nguyên của xx đểAA có giá trị nguyên.

Bài 4 (3,5 điểm)Cho ΔABCΔABCvuông tại AA, gọi MM là trung điểm của ACAC. Gọi DD là điểm đối xứng với BB  qua MM.

a)Chứng minh tứ giác ABCDABCD là hình bình hành.

b)Gọi NN là điểm đối xứng với BB  qua AA. Chứng minh tứ giác ACDNACDN là hình chữ nhật.

c)Kéo dài MNMN cắt BCBC tại II. Vẽ đường thẳng qua AA song song với MNMN cắt BCBC ởKK. Chứng minh: KC=2BKKC=2BK

d)Qua BB kẻ đường thẳng song song với MNMN cắt ACAC kéo dài tại EE . Tam giác ABCABC cần có thêm điều kiện gì để tứ giác EBMNEBMN là hình vuông.

Bài 5 (0,5 điểm)Cho aa thỏa mãn: a2−5a+2=0a2−5a+2=0. Tính giá trị của biểu thức:P=a5−a4−18a3+9a2−5a+2017+(a4−40a2+4):a2


 

0
6 tháng 12 2018

\(x^2-2x+114=x\left(x-2\right)+114va,x\left(x-2\right)\ge-1\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\Rightarrow Q_{min}=-1+114=113\)

6 tháng 12 2018

Bài 1 :

\(Q=x^2-2x+114\)

\(Q=x^2-2\cdot x\cdot1+1^2+113\)

\(Q=\left(x-1\right)^2+113\ge113\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy Qmin = 113 khi và chỉ khi x = 1

Bài 2:

a) \(x^2+4x-5x-20\)

\(=x\left(x+4\right)-5\left(x+4\right)\)

\(=\left(x+4\right)\left(x-5\right)\)

b) \(x^3+2x^2-9x-18\)

\(=x^2\left(x+2\right)-9\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-9\right)\)

\(=\left(x+2\right)\left(x-3\right)\left(x+3\right)\)

Bài 1: 

a: \(A=\dfrac{3x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x-1}{x^2+x+1}\)

\(=\dfrac{3x+x^2-2x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x-1}\)

b: Để A=2 thì x-1=1/2

hay x=3/2

11 tháng 8 2016

1.a) Ta có : góc MAN= GÓC MCN \(\Rightarrow\)NC // AM (1)
Lại có ABCD là hình bình hành \(\Rightarrow\) AB//=DC (2)
từ (1) và (2) \(\Rightarrow\) ANCM là hình bình hành( tứ giác có 2 cặp cạnh // với nhau)

11 tháng 8 2016

2)

Ảnh chụp màn hình_2012-09-01_142149.png

Sử dụng tính chất đường trung bình. Dễ dàng chứng minh QENF,MEPF là hình bình hành
Vậy EF và QN giao nhau tại trung điểm mỗi đường, EF và MP giao nhau tại trung điểm mỗi đường.
⇒QN giao MP tại trung điểm mỗi đường.
Vậy QPNM là hình bình hành.