K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2024

Phương trình hoành độ giao điểm của (P) và (d):

-x² = -mx + m - 1

⇔ x² - mx + m - 1 = 0

∆ = (-m)² - 4.(m - 1)

= m² - 4m + 1

= m² - 4m + 4 - 3

= (m - 2)² - 3

Để (d) cắt (P) tại hai điểm phân biệt thì ∆ > 0

⇔ (m - 2)² - 3 > 0

⇔ (m - 2)² > 3

⇔ m - 2 < -√3 hoặc m - 2 > √3

*) m - 2 < -√3

⇔ m < 2 - √3

*) m - 2 > √3

⇔ m > 2 + √3

⇒ m < 2 - √3; m > 2 + √3 thì (d) cắt (P) tại hai điểm phân biệt

Theo hệ thức Vi-ét, ta có:

x₁ + x₂ = m

x₁x₂ = m - 1

1/x₁ + 1/x₂ = 3/2

⇔ (x₁ + x₂)/(x₁x₂) = 3/2

⇔ m/(m - 1) = 3/2

⇔ 2m = 3(m - 1)

⇔ 2m = 3m - 3

⇔ 3m - 2m = 3

⇔ m = 3 (loại)

Vậy không tìm được m thỏa mãn đề bài

15 tháng 4 2024

tính sai r ạ

 

1) Thay x=0;y=1 vào (d)=>m=2

Hoành độ giao điểm là nghiệm của phương trình:\(x^2=x+m-1\)

\(x^2-x-m+1=0\)2 điểm phân biệt => \(\Delta>0\)

\(\Delta>0=>1-4.\left(-m+1\right)=4m-3>0=>m>\frac{3}{4}\)

Áp dụng hệ thức Vi-ét:

\(x_1+x_2=1;x_1x_2=-m+1\)

\(4.\left(\frac{1}{x_1}+\frac{1}{x_2}\right)-x_1x_2+3=0=>4.\left(\frac{x_1+x_2}{x_1x_2}\right)-x_1x_2+3=0\)

\(\Rightarrow\frac{4}{-m+1}+m-1+3=0=>\frac{4}{-m+1}+m-2=0=>m^2-3m-2=0\)

Dùng công thức nghiệm được \(\Rightarrow x_1=\frac{3-\sqrt{17}}{2}\left(KTM\right);x_2=\frac{3+\sqrt{17}}{2}\left(TM\right)\)

Vậy...

10 tháng 4 2022

a) Lập phương trình hoành độ giao điểm: 

x2 = mx + 3

<=> x2 - mx - 3 = 0

Tọa độ (P) và (d) khi m = 2:

<=> x2 - 2x - 3 = 0

<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)

Tọa độ (P) và (d): A(3; 9) và B(-1; 1)

b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)

<=> (-m)2 - 4.1(-3) > 0

<=> m2 + 12 > 0 \(\forall m\)

Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)

<=> 2x2 + 2x1 = 3x1x2 

<=> 2(x2 + x1) = 3x1x2

Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)

<=> 2m = 3(-3)

<=> 2m = -9

<=> m = -9/2

a: Khi m=1 thì \(y=x-\dfrac{1}{2}+1+1=x+\dfrac{3}{2}\)

PTHĐGĐ là: \(\dfrac{1}{2}x^2-x-\dfrac{3}{2}=0\)

\(\Leftrightarrow x^2-2x-3=0\)

=>x=3 hoặc x=-1

Khi x=3 thì y=9/2

Khi x=-1 thì y=9

b: PTHĐGĐ là:

\(\dfrac{1}{2}x^2-mx+\dfrac{1}{2}m^2-m-1=0\)

\(\Leftrightarrow x^2-2mx+m^2-2m-2=0\)

\(\text{Δ}=\left(-2m\right)^2-4\left(m^2-2m-2\right)\)

\(=4m^2-4m^2+8m+8=8m+8\)

Để phương trình có hai nghiệm phân biệt thì 8m+8>0

hay m>-1

Theo đề, ta có: \(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)

\(\Leftrightarrow\sqrt{4m^2-4\left(m^2-2m-2\right)}=2\)

\(\Leftrightarrow\sqrt{4m^2-4m^2+8m+8}=2\)

=>8m+8=4

=>8m=-4

hay m=-1/2

NV
4 tháng 1 2019

Phương trình hoành độ giao điểm:

\(\dfrac{1}{4}x^2+mx-\dfrac{1}{2}m^2+m+1=0\Leftrightarrow x^2+4mx-2m^2+4m+4=0\)

\(\Delta'=4m^2+2m^2-4m-4=6m^2-4m-4\ge0\) (1)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-4m\\x_1x_2=-2m^2+4m+4\end{matrix}\right.\)

\(x_1^2+x_2^2=5m\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=5m\)

\(\Leftrightarrow\left(-4m\right)^2-2\left(-2m^2+4m+4\right)=5m\)

\(\Leftrightarrow20m^2-13m-8=0\) \(\Rightarrow\left[{}\begin{matrix}m=\dfrac{13+\sqrt{809}}{40}\\m=\dfrac{13-\sqrt{809}}{40}\end{matrix}\right.\)

Thay 2 giá trị của m vào (1) đều ko thỏa mãn

Vậy không tồn tại m thỏa mãn