K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2023

Bài 3 :

\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}\)

\(\dfrac{1}{2!}=\dfrac{1}{2.1}=1-\dfrac{1}{2}< 1\)

\(\dfrac{1}{3!}=\dfrac{1}{3.2.1}=1-\dfrac{1}{2}-\dfrac{1}{3}< 1\)

\(\dfrac{1}{4!}=\dfrac{1}{4.3.2.1}< \dfrac{1}{3!}< \dfrac{1}{2!}< 1\)

.....

\(\)\(\dfrac{1}{2023!}=\dfrac{1}{2023.2022....2.1}< \dfrac{1}{2022!}< ...< \dfrac{1}{2!}< 1\)

\(\Rightarrow\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)

25 tháng 7 2023

Bạn xem lại đề 2, phần mẫu của N

Bài 1:Tính:a,\(\sqrt{\left(a-2\right)^2}\)với a\(\ge\)2b,\(\sqrt{\left(a+10\right)^2}\)với a<-10c,\(\sqrt{\left(3-a\right)^2}\)(a\(\in\)R)Bài 2;Tìm x để:a,\(\sqrt{x}\)=1/2b,\(\sqrt{x+7}\)=4c,\(\sqrt{2x-1}\)=1/3d,\(\sqrt{x+1}\)=0e,\(\sqrt{x-3}\)+2=0f,\(\sqrt{2x}\)+3=9Bài 3:Cho A=\(\sqrt{x^2+y^2-2z^2}\).Tính giá trị A khi x=\(\sqrt{5}\),y=2,z=0Bài 4:So sánh:a,\(4\frac{8}{33}\)và 3\(\sqrt{2}\)b,5.\(\sqrt{\left(-10\right)^2}\) và 10.\(\sqrt{\left(-5\right)^2}\)Bài 5:Không dùng...
Đọc tiếp

Bài 1:Tính:

a,\(\sqrt{\left(a-2\right)^2}\)với a\(\ge\)2

b,\(\sqrt{\left(a+10\right)^2}\)với a<-10

c,\(\sqrt{\left(3-a\right)^2}\)(a\(\in\)R)

Bài 2;Tìm x để:

a,\(\sqrt{x}\)=1/2

b,\(\sqrt{x+7}\)=4

c,\(\sqrt{2x-1}\)=1/3

d,\(\sqrt{x+1}\)=0

e,\(\sqrt{x-3}\)+2=0

f,\(\sqrt{2x}\)+3=9

Bài 3:Cho A=\(\sqrt{x^2+y^2-2z^2}\).Tính giá trị A khi x=\(\sqrt{5}\),y=2,z=0

Bài 4:So sánh:

a,\(4\frac{8}{33}\)và 3\(\sqrt{2}\)

b,5.\(\sqrt{\left(-10\right)^2}\) và 10.\(\sqrt{\left(-5\right)^2}\)

Bài 5:Không dùng bảng số liệu máy tính hãy so sánh:

a.\(\sqrt{26}+\sqrt{17}\) và 9

b,\(\sqrt{8}-\sqrt{5}\) và 1

c,\(\sqrt{63-27}\) và \(\sqrt{63}-\sqrt{27}\)

Bài 6:Hãy so sánh A và B

A=\(\sqrt{225}-\frac{1}{\sqrt{5}}\)-1

B=\(\sqrt{196}-\frac{1}{\sqrt{6}}\) 

Bài 7:a,CHo M=\(\frac{\sqrt{x}-1}{2}\).Tìm x\(\in\)Z và x<50 để m có giá trị nguyên

         b,Cho P=\(\frac{9}{\sqrt{5}-5}\).Tìm x\(\in\)Z để P có giá trị nguyên

Bài 8:cho P=1/4+2\(\sqrt{x-3}\);Q=9.3.\(\sqrt{x-2}\)

a,Tìm GTNN của P

b,Tìm giá trị lớn nhất của Q

Bài 8:Cho biểu thức :A=|x-1/2|+3/4-x

a,rút gọn A

b,Tìm GTNN của A

Baif9:Cho biểu thức:B=0,(21)-x-?x-0,(4)|

a,Rút gọn B

b,Tìm GTLN của B

Bài 10:So sánh:

a,0,55(56) và 0,5556

b,-1/7 và -0,1428(57)

c,\(2\frac{2}{3}\)và 2,67

d,-7/6 và 1,16667

e,0,(31) và 0,3(11)

      Mn cố gắng giúp mk hết,mình cảm ơn nhìu.Ai xong trước mk tick cho:))

6
3 tháng 2 2019

các bạn giúp mk để mk ăn tết cho zui

3 tháng 2 2019

luong thuy anh giúp mk vs

5 tháng 10 2018

Bài 1 : 

\(a)\)\(A=\sqrt{23}+\sqrt{15}< \sqrt{25}+\sqrt{16}=5+4=9=\sqrt{81}< \sqrt{91}=B\)

Vậy \(A< B\)

\(b)\)\(A=\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}=B\)

Vậy \(A>B\)

Chúc bạn học tốt ~ 

5 tháng 10 2018

Bài 2 : 

\(a)\)\(A=\frac{3\sqrt{x}+3}{\sqrt{x}-2}=\frac{3\sqrt{x}-6}{\sqrt{x}-2}+\frac{9}{\sqrt{x}-2}=\frac{3\left(\sqrt{x}-2\right)}{\sqrt{x}-2}+\frac{9}{\sqrt{x}-2}=3+\frac{9}{\sqrt{x}-2}\)

Để A nguyên \(\Rightarrow\)\(9⋮\sqrt{x}-2\)\(\Rightarrow\)\(\sqrt{x}-2\inƯ\left(9\right)=\left\{1;-1;3;-3;9;-9\right\}\)

\(\sqrt{x}-2\)\(1\)\(-1\)\(3\)\(-3\)\(9\)\(-9\)
\(x\)\(9\)\(1\)\(25\)\(\varnothing\)\(121\)\(\varnothing\)

Vậy để A nguyên thì \(x\in\left\{1;9;25;121\right\}\)

Mấy câu còn lại tương tự 

Chúc bạn học tốt ~ 

15 tháng 3 2020

a)Ta có : \(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)

\(\Rightarrow\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)(đpcm)

b) Ta có : \(\sqrt{625}-\frac{1}{\sqrt{5}}=25-\frac{1}{\sqrt{5}}>25-\frac{1}{\sqrt{6}}=24-\frac{1}{\sqrt{6}}+1=\sqrt{576}-\frac{1}{\sqrt{6}}+1\)

\(\Rightarrow\sqrt{625}-\frac{1}{\sqrt{5}}>\sqrt{576}-\frac{1}{\sqrt{6}}+1\)(đpcm)

14 tháng 10 2021

\(a,\left(\sqrt{2}+\sqrt{11}\right)^2=12+2\sqrt{22}\\ \left(\sqrt{3}+5\right)^2=28+10\sqrt{3}\)

Ta thấy \(12< 28;2\sqrt{22}=\sqrt{88}< \sqrt{300}=10\sqrt{3}\)

Nên \(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)

\(b,\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\\ \left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)

Vì \(\sqrt{105}< \sqrt{120}\Rightarrow-2\sqrt{105}>-2\sqrt{120}\)

Nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

12 tháng 11 2016

a) có \(\sqrt{2}\) <\(\sqrt{3}\)

5= \(\sqrt{25}\) >\(\sqrt{11}\)

=>\(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)

12 tháng 11 2016

b)có \(\sqrt{21}>\sqrt{20}\)

-\(\sqrt{5}\) >-\(\sqrt{6}\)

=>\(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

11 tháng 12 2021

a, \(\sqrt{25}-3\sqrt{\dfrac{4}{9}}=5-3.\dfrac{2}{3}=3\)

11 tháng 12 2021

b, \(\left(2-\dfrac{5}{3}\right):\left(\dfrac{2}{7}+\dfrac{5}{21}-1\right)\)

\(=\dfrac{1}{3}:\dfrac{6+5-21}{21}\)

\(=-\dfrac{1}{3}.\dfrac{21}{10}\)

\(=-\dfrac{7}{10}\)