Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Xét \(\Delta ABD\) và \(\Delta KBD\)
AB=BK (gt); BD chung
\(\widehat{ABD}=\widehat{KBD}\) (gt)
\(\Rightarrow\Delta ABD=\Delta KBD\left(c.g.c\right)\Rightarrow AD=DK\)
b/
\(\Delta ABD=\Delta KBD\Rightarrow\widehat{BAC}=\widehat{BKD}=90^o\Rightarrow DK\perp BC\)
\(AH\perp BC\left(gt\right)\)
=> AH//DK (cùng vuông góc với BC)
c/
Gọi M' là giao của BD với CE. Xét \(\Delta BCE\) có
\(EK\perp BC,CA\perp BE\)=> D là trực tâm của \(\Delta BCE\Rightarrow BM\perp CE\) (trong tam giác 3 đường cao đồng quy tại 1 điểm gọi là trực tâm của tam giác)
Mà BM là phân giác của \(\widehat{ABC}\Rightarrow\Delta BCE\) cân tại B (trong tam giác đường cao đồng thời là đường phân giác thì tg đó là tg cân)
=> BM' là đường trung tuyến (trong tg cân đường cao xp từ đỉnh đồng thời là đường trung tuyến của tam giác)
=> M' là trung điểm của CE, mà M cũng là trung điểm của CE => M trùng M' => B, D, M thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
Góc AMK là góc ở đỉnh M của tam giác ABM nên
GÓC AMK > GÓC ABK
GÓC KMC LÀ GÓC NGOÀI Ở ĐỈNH M CỦA TAM GIÁC CBM NÊN
KMC>CBK
SUY RA AMK+KMC>ABK+CBK
DO ĐÓ GÓC AMC > GÓC ABC
Em tham khảo nhé!
Câu hỏi của ICHIGO HOSHIMIYA - Toán lớp 7 - Học toán với OnlineMath
![](https://rs.olm.vn/images/avt/0.png?1311)
Trong toán học, bất đẳng thức Cauchy là bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm được phát biểu như sau:
Trung bình cộng của n số thực không âm luôn lớn hơn hoặc bằng trung bình nhân của chúng, và trung bình cộng chỉ bằng trung bình nhân khi và chỉ khi n số đó bằng nhau.
- Với 2 số:
\(\frac{a+b}{2}\)\(\ge\)\(\sqrt{ab}\)
Đẳng thức xảy ra khi và chỉ khi \(a\)\(=\)\(b\)
- Với n số:
\(\frac{x_1+x_2+...+x_n}{n}\)\(\ge\)\(\sqrt[n]{x_1\times x_2\times...\times x_n}\)
Dấu "=" xảy ra khi và chỉ khi x1 = x2 = ... = xn
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔABC cân tại A)
\(\widehat{A}\) chung
Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)
b) Ta có: ΔABD=ΔACE(cmt)
⇒\(\widehat{ABD}=\widehat{ACE}\)(hai góc tương ứng)
Ta có: \(\widehat{ABD}+\widehat{CBD}=\widehat{ABC}\)(tia BD nằm giữa hai tia BA,BC)
\(\widehat{ACE}+\widehat{BCE}=\widehat{ACB}\)(tia CE nằm giữa hai tia CA,CB)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
và \(\widehat{ABD}=\widehat{ACE}\)(cmt)
nên \(\widehat{DBC}=\widehat{ECB}\)
hay \(\widehat{IBC}=\widehat{ICB}\)
Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)
nên ΔIBC cân tại I(định lí đảo của tam giác cân)
⇒IB=IC
Xét ΔABI và ΔACI có
AB=AC(ΔABC cân tại A)
AI là cạnh chung
BI=CI(cmt)
Do đó: ΔABI=ΔACI(c-c-c)
⇒\(\widehat{BAI}=\widehat{CAI}\)(hai góc tương ứng)(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Xét tg ABH vag tg CAI
Ta có: góc BAH = góc ACI=90 độ - góc IAC
AB=AC
góc AHB= góc CIA=90 độ
Nên tg ABH = tg CAI (cạnh huyền-cạnh góc vuông)
=> BH=AI
b. Ta có:BH=AI (chứng minh câu a)
AD+BH=IC+AI=AB=AC
=>\(BH^2+CI^2\) có giá trị không đổi
c. Ta có: CI vuông góc với AD =>CI là đường cao của tg ACD
AM vuông góc với DC =>AM là đường cao của tg ACD
Mà 2 đường cao CI và AM cắt nhau tại N
=>DN là đường cao thứ 3 của tg ACD
Vậy DN vuông góc với AC
d. AM vuông góc với BM
AI vuông góc với BH
=>góc MBH=góc MAI
Xét tg BHM và tg AIM
Ta có: BH=AI (chứng minh câu a)
Góc MBH=góc MAI(cmt)
BM=AM
Nên tg BHM=tg AIM(g.c.g)
=>HM=IM(1)
Góc BMH=góc AMI(2)
Từ (1) và (2) ta có:
Tg IMH vuông cân tại M
Vậy IM là tia phân giác của góc HIC
Câu c là chứng minh DN2=NK2-KE2