Bài 10: Cho tam giác ABC vuông tại A có AB = 3cm, BC = 5cm,  Đường cao AH...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2021

Bài 10 : 

a, Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=25-9=16\Rightarrow AC=4\)cm 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=\frac{12}{5}\)cm 

b, Vì AE là phân giác ^A suy ra : \(\frac{AB}{AC}=\frac{BE}{CE}\Rightarrow\frac{CE}{AC}=\frac{BE}{AB}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{CE}{AC}=\frac{BE}{AB}=\frac{BC}{AB+AC}=\frac{5}{7}\Rightarrow BE=\frac{5}{7}.3=\frac{15}{7}\)cm 

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{9}{5}\)cm 

=> \(HE=BE-BH=\frac{15}{7}-\frac{9}{5}=\frac{12}{35}\)cm 

Áp dụng định lí Pytago tam giác AHE vuông tại H 

\(AE^2=AH^2+HE^2=\left(\frac{12}{5}\right)^2+\left(\frac{12}{35}\right)^2=\frac{288}{49}\Rightarrow AE=\frac{12\sqrt{2}}{7}\)cm 

22 tháng 9 2016

giúp mình với

 

21 tháng 9 2019

Bài 2:

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)\(AH\perp BC\)

\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)

\(AH^2=25.64\)

\(AH=\sqrt{1600}=40cm\)

Xét \(\Delta ABH\)\(\widehat{H}=90^o\)

\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)

\(\Rightarrow\widehat{B}\approx58^o\)

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)

\(58^o+\widehat{C}=90^o\)

\(\Rightarrow\widehat{C}\approx90^o-58^o\)

\(\widehat{C}\approx32^o\)

1 tháng 6 2017

bài trong sbt có giải á bạn

15 tháng 7 2017

a) Trong tam giác vuông BCH, ta có:

CH=BC.sin⁡B^=12.sin⁡60≈10,392 (cm)

Trong tam giác vuông ABC, ta có:

\(A\)=180−(60+40)=80

Trong tam giác vuông ACH, ta có:

\(AC=\dfrac{CH}{sinA}=\dfrac{10,932}{sin80}=10,552\left(cm\right)\)

b) Kẻ AK⊥BCAK⊥BC

Trong tam giác vuông ACK, ta có:

AK=AC.sin⁡C≈10,552.sin⁡40=6,783 (cm)

Vậy SABC=12.AK.BC≈12.6,783.12=40,696 (cm2)



28 tháng 7 2019

chịu toán lp 9 mới có lp 7 thôi mà

14 tháng 7 2019

1)

gọi I là giao điểm của BD và CE

ta có E là trung điểm cua AB nên EB bằng 3 cm

xét △EBI có \(\widehat{I}\)=900 

EB2 = EI2 + BI2 =32=9             (1)

tương tự IC2 + DI2 = 16            (2)

lấy (1) + (2) ta được

EI2+DI2+BI2+IC2=25

⇔ ED2+BC2=25

xét △ABC có E là trung điểm của AB và D là trung điểm của AC

⇒ ED là đường trung bình của tam giác

⇒ 2ED =BC

⇔ ED2=14BC2

⇒ 14BC2+BC2=25

⇔ 54BC2=25

⇔ BC2=20BC2=20

⇔ BC=√20

31 tháng 7 2019

Ta có: \(S_{AHC}=\frac{AH.AC}{2}=96\left(cm^2\right)\Rightarrow AH.AC=192cm\)(1)

\(S_{ABH}=\frac{AH.BH}{2}=54\left(cm^2\right)\Rightarrow AH.BH=108cm\)(2)

Từ (1) và (2) \(\Rightarrow AH.BH.AH.HC=20736\)

Mà: AH2=BH.CH

    => AH2.AH2=BH.CH.AH2

   <=> AH4=20736

    => AH=12cm

    => BH=9cm ; CH=16cm

      Vậy BC=25cm

25 tháng 10 2020

A C H B E F D