\(\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 6:

a: A={-1;1;3}

b: X={-1;1}; X={-1;1;3}; X={-1;3}

Câu 5: 

Mệnh đề này sai vì chẳng có giá trị x là số hữu tỉ nào để \(x^2=2\) hết

Mệnh đề phủ định là: \(\overline{A}:\forall x\in Q,x^2< >2\)

I) trắc nghiệm câu 1 mệnh đề nào sau đây là mệnh đề sai? A. \(\forall n\in N:n\le2n\) B. \(\exists n\in N:N^2=n\) C. \(\forall x\in R:x^2>0\) D. \(\exists x\in R:X>X^2\) câu 2: cho nữa khoảng A=[0;3) và B=(b;b+4]. \(A\subset B\) nếu: A. -1<b\(\le\)0 B. -1\(\le\)b<0 C. -1\(\le\)b\(\le\)0 D. đáp án khác II)tự luận câu 1 a) cho mệnh đề:" nếu một số tự nhiên chia hết cho 6 thì nó chia hết cho 3". phát biểu mệnh đề dưới dạng...
Đọc tiếp

I) trắc nghiệm

câu 1 mệnh đề nào sau đây là mệnh đề sai?

A. \(\forall n\in N:n\le2n\) B. \(\exists n\in N:N^2=n\) C. \(\forall x\in R:x^2>0\) D. \(\exists x\in R:X>X^2\)

câu 2: cho nữa khoảng A=[0;3) và B=(b;b+4]. \(A\subset B\) nếu:

A. -1<b\(\le\)0 B. -1\(\le\)b<0 C. -1\(\le\)b\(\le\)0 D. đáp án khác

II)tự luận

câu 1

a) cho mệnh đề:" nếu một số tự nhiên chia hết cho 6 thì nó chia hết cho 3". phát biểu mệnh đề dưới dạng "điều kiện cần"

b) cho mệnh đề P:"\(\exists x\in Q:2x^2-5x+2=0\).Xét tính đúng sai của mệnh đề P và nêu mệnh đề phủ định của mệnh đề P

câu 2 cho hai tập hợp sau> Hãy liên kế các phần tử trong tập A và B

\(A=\left\{x\in N:\left|x\right|< 4\right\}\)

\(B=\left\{x\in Q:\left(4x^2-x\right)\left(x^2+3x-4\right)=0\right\}\)

câu 3 cho hai tập hợp \(A=\left\{x\in N:\left(x^2+2x\right)\left(x^2+x-2\right)\right\}=0\)và tập hợp \(B=\left\{-1;0;1\right\}\). Tìm các tập hợp \(A\cup B;A\cap B;\) A\B;B\A

câu 4 cho hai tập hợp \(A=\left\{x\in R/-2< x< 3\right\}\)\(B=(-\infty;2]\). Tìm tập hợp \(A\cup B;A\cap B;\)A\B;B\A và biểu diễn trên trục số

0
15 tháng 4 2017

a) Có một số tự nhiên n không chia hết cho chính nó. Mệnh đề này đúng vì n=0 ∈ N, 0 không chia hết cho 0.

b) = "Bình phương của một số hữu tỉ là một số khác 2". Mệnh đề đúng.

c) = ∃x ∈ R: x≥x+1= "Tồn tại số thực x không nhỏ hơn số ấy cộng với 1". Mệnh đề này sai.

d) = ∀x ∈ R: 3x ≠ x2+1= "Tổng của 1 với bình phương của số thực x luôn luôn không bằng 3 lần số x"

Đây là mệnh đề sai vì với x= ta có :

3 =+1

5 tháng 6 2017

Nếu \(x\in A\)\(x\notin B\) thì \(x\in A\B\).
a) Sai
b) Đúng
c) Đúng
d) Sai

AH
Akai Haruma
Giáo viên
29 tháng 8 2018

Bài 1:

a) \(\Delta=(1-\sqrt{3})^2-4(\sqrt{3}-2)=12-6\sqrt{3}>0\) nên pt có nghiệm.

Mệnh đề A sai.

b)

\(x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0, \forall x\in\mathbb{R}\)

\(\Rightarrow x^2\geq x-\frac{1}{4} , \forall x\in\mathbb{R}\). Mệnh đề B đúng.

c) Sai, $2017$ chỉ có ước là 1 và chính nó nên là số nguyên tố.

d) \(x^2+y^2-\frac{3}{2}y+\frac{3}{4}-xy=(x^2+\frac{y^2}{4}-xy)+\frac{3}{4}y^2-\frac{3}{2}y+\frac{3}{4}\)

\(=(x-\frac{y}{2})^2+\frac{3}{4}(y^2-2y+1)=(x-\frac{y}{2})^2+\frac{3}{4}(y-1)^2\)

\(\geq 0+\frac{3}{4}.0=0\) với mọi $x,y$

\(\Rightarrow x^2+y^2-\frac{3}{2}y+\frac{3}{4}\geq xy\)

Mệnh đề đúng.

29 tháng 8 2018

còn bài 2 giải sao thầy

NV
28 tháng 8 2020

3.

\(\left|2x-4\right|< 10\Leftrightarrow-10< 2x-4< 10\)

\(\Leftrightarrow-3< x< 7\)

\(\Rightarrow C=\left(-3;7\right)\)

\(\left|-3x+5\right|>8\Rightarrow\left[{}\begin{matrix}-3x+5>8\\-3x+5< -8\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x< -1\\x>\frac{13}{3}\end{matrix}\right.\) \(\Rightarrow D=\left(-\infty;-1\right)\cup\left(\frac{13}{3};+\infty\right)\)

\(\Rightarrow C\cap D=\left(-3;-1\right)\cap\left(\frac{13}{3};7\right)\)

\(\Rightarrow\left(C\cap\right)D\cup E=\left(-3;7\right)\)

4.

Hình như cái đề chẳng liên quan gì đến đáp án hết :)

NV
28 tháng 8 2020

1.

\(A\cap B\ne\varnothing\Leftrightarrow\left\{{}\begin{matrix}2m-1\le m+2\\2m+3\ge m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\le3\\m\ge-3\end{matrix}\right.\) \(\Rightarrow-3\le m\le3\)

2.

\(\frac{5}{\left|2x-1\right|}>2\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\\left|2x-1\right|< \frac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\-\frac{5}{2}< 2x-1< \frac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\-\frac{3}{4}< x< \frac{7}{4}\end{matrix}\right.\)

Rất tiếc tập này không thể liệt kê được (có vô số phần tử)

Bài 1:

a: Mệnh đề phủ định là \(\exists x\in R;x^2< x\)

b: Mệnh đề P sai vì với 0<x<1 thì \(x^2< x\)

1: A=[-3;6)

C={1;3}

2: B\(\cap\)C={1}

A\B=[-3;-1)

Bài 1:Cho các tập hợp A=(-∞ ; m) và B=(3m-1; 3m+3) Tìm m để: a, \(A\cap B=\varnothing\)(đs m\(\ge\dfrac{1}{2}\)) b,\(B\subset A\)( đs m<\(\dfrac{-3}{2}\)) c,\(A\subset C_RB\)(đs m\(\ge\dfrac{1}{2}\)) d,\(C_RA\cap B\ne\varnothing\)( đs m \(\ge\dfrac{-3}{2}\)) Bài 2: Cho A=\(\left(-\infty;-2\right)\)và B=\(\left(2m+1;+\infty\right)\). Tìm m để A\(\cup\)B=R Bài 3: a, Tìm m để (1 ; m) \(\cap\) (2 ; +\(\infty\))\(\ne\varnothing\) b, Viết tập A gồm các phần...
Đọc tiếp

Bài 1:Cho các tập hợp A=(-∞ ; m) và B=(3m-1; 3m+3) Tìm m để:

a, \(A\cap B=\varnothing\)(đs m\(\ge\dfrac{1}{2}\))

b,\(B\subset A\)( đs m<\(\dfrac{-3}{2}\))

c,\(A\subset C_RB\)(đs m\(\ge\dfrac{1}{2}\))

d,\(C_RA\cap B\ne\varnothing\)( đs m \(\ge\dfrac{-3}{2}\))

Bài 2: Cho A=\(\left(-\infty;-2\right)\)và B=\(\left(2m+1;+\infty\right)\). Tìm m để A\(\cup\)B=R

Bài 3:

a, Tìm m để (1 ; m) \(\cap\) (2 ; +\(\infty\))\(\ne\varnothing\)

b, Viết tập A gồm các phần tử x thỏa mãn điều kiện\(\left\{{}\begin{matrix}x\le3\\x+1\ge\\x< 0\end{matrix}\right.0}\)

với x+1\(\ge0\)dưới dạng tập số.

Bài 4:

Cho A=(m;m+2) và B+(n;n+1). Tìm điều kiện của các số m và n để A\(\cap\)B=\(\varnothing\)

Bài 5:

Cho tập hợp A=\(\left(m-1;\dfrac{m+1}{2}\right)\)và B=\(\left(-\infty;-2\right)\cup\left(2;+\infty\right)\). Tìm m để:

a, \(A\cap B\ne\varnothing\)

b, \(A\subset B\)

c, \(B\subset A\)

d, \(A\cap B=\varnothing\)

Bài 6:Cho 2 tập khác rỗng: A=(m-1 ; 4) và B=(-2 ; 2m+2), với ác định m để:

a, A\(\cap B\ne\varnothing\)

b, A\(\subset B\)

c,\(B\subset A\)

1

Bài 6:

a: Để A giao B khác rỗng thì 2m+2<=4 hoặc m-1>=-2

=>m<=1 hoặc m>=-1

b: Để A là tập con của B thì m-1>-2 và 4<=2m+2

=>m>-1 và 2m+2>=4

=>m>-1 và m>=1

=>m>=1

c: Để B là tập con của B thì m-1<-2 và 2m+2<=4

=>m<-1 và m<=1

=>m<-1