K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 7 2019

Bài 1:

a/ Với \(x=0\Rightarrow0-0+1>0\) đúng

Vậy mệnh đề đúng

Phủ định: \(\forall x\in R;x^3-x^2+1\le0\)

Hoặc: \(∄x\in R,x^3-x^3+1>0\)

b/ \(x^4-x^2+1=\left(x^2+1\right)^2-3x^2=\left(x^2+\sqrt{3}x+1\right)\left(x^2-\sqrt{3}x+1\right)\)

Vậy mệnh đề đã cho là đúng

Phủ định: \(\exists x\in R,x^4-x^2+1\ne\left(x^2+\sqrt{3}x+1\right)\left(x^2-\sqrt{3}x+1\right)\)

Câu 2:

a/ Với \(x=0\Rightarrow0>-2\) nhưng \(0^2< 4\)

\(\Rightarrow\) Mệnh đề sai

b/ Mệnh đề đúng do \(x\in N\Rightarrow x\ge0\)

\(x>2\Rightarrow x^2>4\) (2 vế của BĐT đều không âm thì có thể bình phương 2 vế)

Câu 3:

P là mệnh đề đúng

\(P:\) "\(\forall x\in R,x\in Q\Rightarrow2x\in Q\)"

\(\overline{P}:\) "\(\exists x\in R,x\in Q\Rightarrow2x\notin Q\)"

\(\overline{P}\) là mệnh đề sai

Chứng minh P đúng:

Do x hữu tỉ, đặt \(x=\frac{a}{b}\) với a; b là các số nguyên \(\left(a;b\right)=1\)\(b\ne0\)

\(\Rightarrow2x=\frac{2a}{b}\)

Do a nguyên \(\Rightarrow2a\) nguyên \(\Rightarrow\frac{2a}{b}\) hữu tỉ

b/ Mệnh đề đảo của P:

" Với mọi số thực x, nếu 2x là số hữu tỉ thì x là số hữu tỉ"

Chứng minh tương tự như trên

c/ "Với mọi số thực x thì x là số hữu tỉ khi và chỉ khi 2x là số hữu tỉ"

Bài 4:

a/ Là mệnh đề sai, ví dụ \(x=1;y=1\)

b/ Là mệnh đề đúng, ví dụ: \(x=1;y=1\)

17 tháng 5 2017

a) \(\left(P\Rightarrow Q\right):\)"Nếu \(x\) là một số hữu tỉ \(x^2\) cũng là một số hữu tỉ". Mệnh đề đúng.

b) Mệnh đề đảo là " Nếu \(x^2\) là một số hữu tỉ thì \(x\) là một số hữu tỉ"

c) Chẳng hạn, với \(x=\sqrt{2}\) mệnh đề này sai

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Mệnh đề sai, vì chỉ có \(x =  - 3\) thảo mãn \(x + 3 = 0\) nhưng \( - 3 \notin \mathbb{N}\).

Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{N},x + 3 \ne 0\)”.

b) Mệnh đề đúng, vì  \({(x - 1)^2} \ge 0\) hay\({x^2} + 1 \ge 2x\) với mọi số thực x.

Mệnh đề phủ định của mệnh đề này là: “\(\exists x \in \mathbb{R},{x^2} + 1 < 2x\)”

 c) Mệnh đề sai, vì có \(a =  - 2 \in \mathbb{R},\sqrt {{{( - 2)}^2}}  = 2 \ne a\)

Mệnh đề phủ định của mệnh đề này là: “\(\exists a \in \mathbb{R},\sqrt {{a^2}}  \ne a\)”.

NV
10 tháng 10 2019

Mệnh đề trên là mệnh đề đúng mà, sai đâu mà sai bạn? Chắc giáo viên nhầm đó

Một mệnh đề "tồn tại" muốn đúng thì chỉ cần chỉ ra một trường hợp đúng (nhiều hơn 1 cũng ko vấn đề)

Một mệnh đề "với mọi" thì chỉ cần chỉ ra 1 trường hợp sai, mệnh đề đó sẽ sai (có nghĩa muốn "với mọi" đúng thì phải đúng tất cả trường hợp)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Phủ định của mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} \ne 2x - 2\)” là mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} = 2x - 2\)”

Mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} = 2x - 2\)” sai vì \({x^2} \ne 2x - 2\)với mọi số thực x ( vì \({x^2} - 2x + 2 = {(x - 1)^2} + 1 > 0\) hay \({x^2} > 2x - 2\)).

b) Phủ định của mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} \le 2x - 1\)” là mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} > 2x - 1\)”

Mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} > 2x - 1\)” đúng vì có \(x = 2 \in \mathbb{R}:{2^2} >  2.2 - 1\) hay \(4 > 3\) (luôn đúng).

c) Phủ định của mệnh đề “\(\exists x \in \mathbb{R},\;x + \frac{1}{x} \ge 2\)” là mệnh đề “\(\forall x \in \mathbb{R},\;x + \frac{1}{x} < 2\)”.

Mệnh đề “\(\forall x \in \mathbb{R},\;x + \frac{1}{x} < 2\)” sai vì \(x = 2 \in \mathbb{R}\) nhưng \(x + \frac{1}{x} = 2 + \frac{1}{2} > 2\).

d) Phủ định của mệnh đề “\(\exists x \in \mathbb{R},\;{x^2} - x + 1 < 0\)” là mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} - x + 1 \ge 0\)”.

Mệnh đề “\(\forall x \in \mathbb{R},\;{x^2} - x + 1 \ge 0\)” đúng vì \({x^2} - x + 1 = {\left( {x - \frac{1}{2}} \right)^2} + \frac{3}{4} \ge 0\) với mọi số thực x.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Mệnh đề sai, vì \(x = 0 \in \mathbb{R}\) nhưng \({0^2}\) không lớn hơn 0.

Mệnh đề phủ định của mệnh đề này là: “\(\exists x \in \mathbb{R},{x^2} \le 0\)”

b) Mệnh đề đúng, vì \(x = 1 \in \mathbb{R}\) thỏa mãn \({1^2} = 5.1 - 4\)

Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{N},{x^2} \ne 5x - 4\)”

 c) Mệnh đề sai, vì \(2x + 1 = 0 \Leftrightarrow x =  - \frac{1}{2} \notin \mathbb{Z}\)

Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{Z},2x + 1 \ne 0\)”

5 tháng 9 2020

E mới c2 nên cg ch am hiểu lắm nên thôi lm đại nhé:))

Ta có: \(x^2+xy+y^2=\left(x^2+xy+\frac{1}{4}y^2\right)+\frac{3}{4}y^2\)

\(=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2\ge0\left(\forall x,y\right)\)

Vì nếu \(x=y=0\) => \(x^2+xy+y^2=0\)

=> Mệnh đề sai 

Chỉ đúng ở phần không âm

9 tháng 8 2019

Đáp án A

1 tháng 9 2019

C: “∀ x ∈ R : x < x + 1”.

C : “∃ x ∈ R: x ≥ x + 1”.

C sai vì x + 1 luôn lớn hơn x.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Mệnh đề phủ định của các mệnh đề trên là:

a) “Paris không phải là thủ đô của nước Anh”

b) “23 không phải là số nguyên tố”

c) “2021 không chia hết cho 3”

d) “Phương trình \({x^2} - 3x + 4 = 0\) có nghiệm”.

+) Xét tính đúng sai:

a) “Paris là thủ đô của nước Anh” là mệnh đề sai.

“Paris không phải là thủ đô của nước Anh” là mệnh đề đúng.

b) “23 là số nguyên tố” là mệnh đề đúng.

“23 không phải là số nguyên tố” là mệnh đề sai.

c) “2021 chia hết cho 3” là mệnh đề sai.

“2021 không chia hết cho 3” là mệnh đề đúng.

d) “Phương trình \({x^2} - 3x + 4 = 0\) vô nghiệm” là mệnh đề đúng.

“Phương trình \({x^2} - 3x + 4 = 0\) có nghiệm” là mệnh đề sai.