K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2016

a, Gọi thương phép chia là Q(x) khi đó, ta có:

            2x+ ax +1 = (x-3).Q(x) +4

 Với x=3 ta có:   2.32 + 3a +1= 0.Q(x) +4

                                19+3a   = 4

   =>         3a= -15

    =>           a= -5

Giai tương tự với các câu còn lại hoặc có thể dùng phương pháp đồng nhất hệ số

AH
Akai Haruma
Giáo viên
11 tháng 11 2018

Lời giải:

a) Áp dụng định lý Bê-du về phép chia đa thức ta có:

Số dư khi chia đa thức \(f(x)=2x^2+ax+1\) cho $x-3$ là \(f(3)\)

Ta có:

\(f(3)=4\)

\(\Leftrightarrow 2.3^2+a.3+1=4\Rightarrow a=-5\)

b) Ta thêm bớt để đa thức $x^4+ax^2+b$ xuất hiện $x^2-x+1$

\(x^4+ax^2+b=(x^4+x)+ax^2-x+b\)

\(=x(x^3+1)+a(x^2-x+1)+ax-x-a+b\)

\(=x(x+1)(x^2-x+1)+a(x^2-x+1)+x(a-1)+(b-a)\)

\(=(x^2-x+1)(x^2+x+a)+x(a-1)+(b-a)\)

Từ trên suy ra đa thức $x^4+ax^2+b$ khi chia cho đa thức $x^2-x+1$ thì dư \(x(a-1)+(b-a)\)

Để phép chia là chia hết thì :

\(x(a-1)+(b-a)=0, \forall x\Leftrightarrow \left\{\begin{matrix} a-1=0\\ b-a=0\end{matrix}\right.\Rightarrow a=b=1\)

5 tháng 11 2020

cau a dap an la 3 ban oi

 

26 tháng 11 2016
Câu a Mk chưa giải đc B) ta có x4+ax2+1= (x-1)2.P(x) Cho x=1, ta có 1+a+1=0 =>a=-2 C)ta có 2x2+ax+5=(x+3).Q(x)+41 Cho x=-3 => 23-3a=41 =>a=-6

a: \(\Leftrightarrow10x^2-15x+8x-12+a+12⋮2x-3\)

=>a+12=0

hay a=-12

b: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4a-32-4a+28⋮x+4\)

=>-4a+28=0

=>a=7

c: \(\Leftrightarrow2x^3-2x-x^2+1+\left(a+2\right)x+b-1⋮x^2-1\)

=>a+2=0 và b-1=0

=>a=-2 và b=1

Bạn làm được bài này chưa bạn?