Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\left|x\right|-2\left|x\right|+3\left|x\right|=16+6\left|x\right|-19\)
\(\left|x\right|-2\left|x\right|+3\left|x\right|-6\left|x\right|=16-19\)
\(\left|x\right|.\left(1-2+3-6\right)=-3\)
\(\left|x\right|.\left(-4\right)=-3\)
\(\left|x\right|=\dfrac{3}{4}\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
b,
2.(|x| - 5) - 15 = 9
\(2.\left(\left|x\right|-5\right)=9+15\)
\(2.\left(\left|x\right|-5\right)=24\)
\(\left|x\right|-5=24:2\)
\(\left|x\right|-5=12\)
\(\left|x\right|=12+5\)
\(\left|x\right|=17\)
\(\Rightarrow\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)
c,
|8 - 2x| + |4y - 16| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|8-2x\right|=0\\\left|4y-16\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}8-2x=0\\4y-16=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=8\\4y=16\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
d,
|x - 14| + |2y - x| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|x-14\right|=0\\\left|2y-x\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-14=0\\2y-x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=14\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)
2.Tìm x, y, z biết
a,
2.|3x| + |y + 3| + |z - y| = 0
\(\Rightarrow\left\{{}\begin{matrix}2.\left|3x\right|=0\\\left|y+3\right|=0\\\left|z-y\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x\right|=0\\y+3=0\\z-y=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=0\\y=-3\\z=y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)
b, (x - 3y)2 + | y + 4|= 0
\(\Rightarrow\left\{{}\begin{matrix}\left(x-3y\right)2=0\\\left|y+4\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-4\right)\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
a: |3x+2y|+|4y-1|<=0
=>3x+2y=0 và 4y-1=0
=>y=1/4 và x=-1/6
b: |x+y-7|+|xy-10|<=0
=>x+y-7=0 và xy-10=0
=>x+y=7 và xy=10
hay \(\left(x,y\right)\in\left\{\left(2;5\right);\left(5;2\right)\right\}\)
c: |x-y-2|+|y+3|=0
=>x-y-2=0 và y+3=0
=>y=-3 và x-y=2
=>y=-3 và x=2+y=2-3=-1
Mk chỉ làm một ý các câu còn lại bn làm tương tự nha:
a) (x+5).(y-3)=0
Vì x,y thuộc Z nên x+5 thuộc z và y-3 thuộc Z
Vì (x+5).(y-3)=0
=> x+5=0 hoặc y-3=0
(+) x+5=0
x=0-5
x=-5
(+) y-3=0
y=0+3
y=3
Vậy x=-5 và y thuộc Z
hoặc y=3 và x thuộc Z
Nhớ tick cho mk nhé Kim Taehyungie.Dạng này mấy hôm trước mk mới hok nên đúng 100% đấy.Cô mk dạy y hệt như thế này lun
Riên cái câu a đấy thì khác vs 3 câu còn lại nhé nên mk sẽ làm giúp cậu 1 câu còn 2 câu cậu tự làm như câu này nhé:
B) (x-7).(2+y)=13
Vì x,y thuộc Z nên x-7 thuộc Z và 2+y thuộc Z
Vì (x-7).(2+y)=13
=> x-7 thuộc Ư(13)
Ta có Ư(13)={1;13;-1;-13) (tại sao lại có -1 và -13 vì x thuộc z nhé)
Do đó: x-7 thuộc{1;13;-1;-13}
Ta có bảng sau:Bn tự kẻ ra và làm nhé.Cứ thay x vào rồi tìm như bình thường nhé
b \(\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{x\cdot\left(x+1\right)}=\frac{19}{100}\)
=>\(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{19}{100}\)
=>\(\frac{1}{5}-\frac{1}{x+1}\)\(=\frac{19}{100}\)
=>\(\frac{1}{x+1}=\frac{1}{5}-\frac{19}{100}\)
=>\(\frac{1}{x+1}=\frac{1}{100}\)
=> x+1 =100
=>x=99
b) \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{19}{100}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{19}{100}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+1}=\frac{19}{100}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{5}-\frac{19}{100}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{100}\)
\(\Rightarrow x+1=100\)
\(\Rightarrow x=99\)
c) \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x\left(x+2\right)}=\frac{49}{99}\)
\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{49}{99}\)
\(\Rightarrow1-\frac{1}{x+2}=\frac{49}{99}\)
\(\Rightarrow\frac{1}{x+2}=1-\frac{49}{99}\)
\(\Rightarrow\frac{1}{x+2}=\frac{50}{99}\)
\(\Rightarrow50.\left(x+2\right)=99\)
\(\Rightarrow x+2=\frac{99}{50}\)
\(\Rightarrow x=-\frac{1}{99}\)
d) Ta có : 6 = 1.6 = 2.3 = (-2) . (-3)
Lâp bảng xét 6 trường hợp:
\(2x+1\) | \(1\) | \(6\) | \(2\) | \(3\) | \(-2\) | \(-3\) |
\(y-2\) | \(6\) | \(1\) | \(3\) | \(2\) | \(-3\) | \(-2\) |
\(x\) | \(0\) | \(\frac{5}{2}\) | \(\frac{1}{2}\) | \(1\) | \(-\frac{3}{2}\) | \(-2\) |
\(y\) | \(8\) | \(3\) | \(5\) | \(4\) | \(-1\) | \(0\) |
Vậy các cặp (x,y) \(\inℤ\)thỏa mãn là : (0;4) ; (1; 4) ; (-2 ; 0)
e) \(x^2-3xy+3y-x=1\)
\(\Rightarrow x\left(x-3y\right)+3y-x=1\)
\(\Rightarrow x\left(x-3y\right)-\left(x-3y\right)=1\)
\(\Rightarrow\left(x-3y\right)\left(x-1\right)=1\)
Lại có : 1 = 1.1 = (-1) . (-1)
Lập bảng xét các trường hợp :
\(x-1\) | \(1\) | \(-1\) |
\(x-3y\) | \(1\) | \(-1\) |
\(x\) | \(2\) | \(0\) |
\(y\) | \(\frac{1}{3}\) | \(\frac{1}{3}\) |
Vậy các cặp(x,y) thỏa mãn là : \(\left(2;\frac{1}{3}\right);\left(0;\frac{1}{3}\right)\)
Bài 3: A=2018-|x+2019|. Vì |x+2019|\(\ge\)0 nên -|x+2019|\(\le\)0=>2018-|x+2019|\(\le\) 2. Vậy A có GTLN = 2 khi x+2019=0 hay x=-2019. B=-10-\(\left|2x-\dfrac{1}{1009}\right|\). Vì \(\left|2x-\dfrac{1}{1009}\right|\ge0\Rightarrow-\left|2x-\dfrac{1}{1009}\right|\le0\Rightarrow-10-\left|2x-\dfrac{1}{1009}\right|\le-10\). Vậy B có GTLN = -10 khi 2x-\(\dfrac{1}{1009}=0\) => \(2x=\dfrac{1}{1009}\Rightarrow x=\dfrac{1}{1009}:2=\dfrac{1}{2018}\)
Bài 2: A=\(\left|5x+1\right|-\dfrac{3}{8}\). Vì \(\left|5x+1\right|\ge0\Rightarrow\left|5x+1\right|-\dfrac{3}{8}\ge\dfrac{-3}{8}\). Vậy A có GTNN = \(\dfrac{-3}{8}\) khi 5x+1= 0=> 5x= -1=> x = \(\dfrac{-1}{5}\). B=\(\left|2-\dfrac{1}{6}x\right|+0,25\) , vì \(\left|2-\dfrac{1}{6}x\right|\ge0\Rightarrow\left|2-\dfrac{1}{6}x\right|+0,25\ge0,25\) . Vậy B có GTNN = 0,25 khi \(2-\dfrac{1}{6}x=0\Rightarrow\dfrac{x}{6}=2\Rightarrow x=2.6=12\)
Bài 2:
\(\left(x+1\right)^{99}.\left(x-2\right)^{100}=0\)
\(\Rightarrow\)Một trong hai lũy thừa bằng 0.
TH1: \(\left(x+1\right)^{99}=0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=0-1\)
\(\Rightarrow x=-1.\)
TH2: \(\left(x-2\right)^{100}=0\)
\(\Rightarrow x-2=0\)
\(\Rightarrow x=0+2\)
\(\Rightarrow x=2.\)
Vậy \(x\in\left\{-1;2\right\}.\)
Bài 1:
\(-x^2-y^2+15+3x-2y=-3^2-\left(-33\right)^2+3.3-2.\left(-33\right)\)
\(=-9-1089+9-\left(-66\right)=-1098+9+66\)
\(=-1089+66=-1023.\)
đúng bài đầu
sai bài sau