Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT 2
\(\Leftrightarrow\dfrac{3}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}+\dfrac{2x}{\left(x-2\right)\left(x-3\right)}-\dfrac{1}{\left(x-1\right)\left(x-2\right)}=0\) ( \(x\ne1;x\ne2;x\ne3\))
\(\Leftrightarrow\dfrac{3+2x^2-2x-x+3}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=0\)
\(\Rightarrow2x^2-3x+6=0\)
=> PT vô nghiệm.
Bài 2:
b) Phương trình hoành độ giao điểm của (P) và (d) là:
\(2x^2=-x+3\)
\(\Leftrightarrow2x^2+x-3=0\)
\(\Leftrightarrow2x^2-2x+3x-3=0\)
\(\Leftrightarrow2x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{3}{2}\end{matrix}\right.\)
Thay x=1 vào hàm số \(y=2x^2\), ta được:
\(y=2\cdot1^2=2\)
Thay \(x=-\dfrac{3}{2}\) vào hàm số \(y=2x^2\), ta được:
\(y=2\cdot\left(-\dfrac{3}{2}\right)^2=2\cdot\dfrac{9}{4}=\dfrac{9}{2}\)
Vậy: Tọa độ giao điểm của (p) và (D) là (1;2) và \(\left(-\dfrac{3}{2};\dfrac{9}{2}\right)\)
Bài 1:
\(\left\{{}\begin{matrix}xy+2=2x+y\left(1\right)\\2xy+y^2+3y=6\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Rightarrow xy-y+2-2x=0\)
\(\Rightarrow y\left(x-1\right)-2\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(y-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Với \(x=1\). Thay vào (2) ta được:
\(2y+y^2+3y=6\)
\(\Leftrightarrow y^2+5y-6=0\)
\(\Leftrightarrow y^2+y-6y-6=0\)
\(\Leftrightarrow y\left(y+1\right)-6\left(y+1\right)=0\)
\(\Leftrightarrow\left(y+1\right)\left(y-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=6\end{matrix}\right.\)
Với \(y=2\). Thay vào (2) ta được:
\(2x.2+2^2+3.2=6\)
\(\Leftrightarrow4x+4+6=6\)
\(\Leftrightarrow x=-1\)
Vậy hệ phương trình đã cho có nghiệm (x,y) \(\in\left\{\left(1;-1\right),\left(1;6\right),\left(-1;2\right)\right\}\)
Bài 2:
\(f\left(x\right)=x^4+6x^3+11x^2+6x\)
\(=x\left(x^3+6x^2+11x+6\right)\)
\(=x\left(x^3+x^2+5x^2+5x+6x+6\right)\)
\(=x\left[x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\right]\)
\(=x\left(x+1\right)\left(x^2+5x+6\right)\)
\(=x\left(x+1\right)\left(x^2+3x+2x+6\right)\)
\(=x\left(x+1\right)\left[x\left(x+3\right)+2\left(x+3\right)\right]\)
\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
b) Ta có: \(f\left(x\right)+1=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=x\left(x+3\right).\left(x+1\right)\left(x+2\right)+1\)
\(=\left(x^2+3x\right).\left(x^2+3x+2\right)+1\)
\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
Vì x là số nguyên nên \(f\left(x\right)+1\) là số chính phương.
a)
ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
Ta có: \(\dfrac{2x}{x-3}=\dfrac{x^2+11x-6}{x^2-9}\)
\(\Leftrightarrow\dfrac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2+11x-6}{\left(x-3\right)\left(x+3\right)}\)
Suy ra: \(2x^2+6x=x^2+11x-6\)
\(\Leftrightarrow2x^2+6x-x^2-11x+6=0\)
\(\Leftrightarrow x^2-5x+6=0\)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=3\left(loại\right)\end{matrix}\right.\)
Vậy: S={2}
b) Ta có: \(3x^2+\left(1-\sqrt{3}\right)x+\sqrt{3}-4=0\)
\(\Leftrightarrow3x^2-\left(\sqrt{3}-1\right)x+\sqrt{3}-4=0\)
\(\Leftrightarrow3x^2-\left(\sqrt{3}-1\right)x+\sqrt{3}-1-3=0\)
\(\Leftrightarrow\left(3x^2-3\right)-\left(\sqrt{3}-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow3\left(x-1\right)\left(x+1\right)-\left(\sqrt{3}-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+3-\sqrt{3}+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+4-\sqrt{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x+4-\sqrt{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\3x=\sqrt{3}-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{\sqrt{3}-4}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{1;\dfrac{\sqrt{3}-4}{3}\right\}\)
a: =>3x^2-3x-2x+2=0
=>(x-1)(3x-2)=0
=>x=2/3 hoặc x=1
b: =>2x^2=11
=>x^2=11/2
=>\(x=\pm\dfrac{\sqrt{22}}{2}\)
c: Δ=5^2-4*1*7=25-28=-3<0
=>PTVN
f: =>6x^4-6x^2-x^2+1=0
=>(x^2-1)(6x^2-1)=0
=>x^2=1 hoặc x^2=1/6
=>\(\left[{}\begin{matrix}x=\pm1\\x=\pm\dfrac{\sqrt{6}}{6}\end{matrix}\right.\)
d: =>(5-2x)(5+2x)=0
=>x=5/2 hoặc x=-5/2
e: =>4x^2+4x+1=x^2-x+9 và x>=-1/2
=>3x^2+5x-8=0 và x>=-1/2
=>3x^2+8x-3x-8=0 và x>=-1/2
=>(3x+8)(x-1)=0 và x>=-1/2
=>x=1
2:
Gọi độ dài AB là x
Thời gian đi là x/50
Thời gian về là x/40
Theo đề, ta có: x/50+x/40=5,4
=>x=120
Áp dụng bđt \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\) ta có
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2\)
Bài 1. Đặt \(a=\sqrt{x+3},b=\sqrt{x+7}\)
\(\Rightarrow a.b+6=3a+2b\) và \(b^2-a^2=4\)
Từ đó tính được a và b
Bài 2. \(\frac{2x-1}{x^2}+\frac{y-1}{y^2}+\frac{6z-9}{z^2}=\frac{9}{4}\)
\(\Leftrightarrow\frac{2}{x}-\frac{1}{x^2}+\frac{1}{y}-\frac{1}{y^2}+\frac{6}{z}-\frac{9}{z^2}-\frac{9}{4}=0\)
Đặt \(a=\frac{1}{x},b=\frac{1}{y},c=\frac{1}{z}\)
Ta có \(2a-a^2+b-b^2+6c-9c^2-\frac{9}{4}=0\)
\(\Leftrightarrow-\left(a^2-2a+1\right)-\left(b^2-b+\frac{1}{4}\right)-\left(9c^2-6c+1\right)=0\)
\(\Leftrightarrow-\left(a-1\right)^2-\left(b-\frac{1}{2}\right)^2-\left(3c-1\right)^2=0\)
Áp dụng tính chất bất đẳng thức suy ra a = 1 , b = 1/2 , c = 1/3
Rồi từ đó tìm được x,y,z