Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.
Ta có: B=n2+n3=n.(n2+1)
Vì n là số tự nhiên=>n có 2 dạng là 2k và 2k+1
*Với n=2k=>B=n.(n2+1)=2k.(2k2+1) chia hết cho 2=>B chẵn(1)
*Xét n=2k+1=>B=n.(n2+1)=(2k+1).((2k+1)2+1)
=>B=(2k+1).(2k2+2.2k.1+12+1)
=>B=(2k+1).(2k.2k+2.2k+1+1)
=>B=(2k+1).(2.4k+2.2k+2)
=>B=(2k+1).(4k+2k+1).2 chia hết cho 2
=>B chẵn(2)
Từ (1) và (2)=>B là số chẵn
=>B:2(dư 0)
Mình cứ tưởng trên đời này có mỗi mình tuôi là khổ nhất hóa ra còn người khổ hơn tuôi nưa!!! Đò chính là nguyenminhtam
Noooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo!!!!!!
Bài 1: Bạn vào câu hỏi tương tự có câu trả lời của mình rồi đó.
Bài 2:
a) n+2 chia hết cho n
=>2 chia hết cho n
=>n=Ư(2)=(1,2)
b)3n+5 chia hết cho n
=>5 chia hết cho n
=>n=Ư(5)-(1,5)
c)14-3n chia hết cho n
=>14 chia hết cho n
=>n=Ư(14)=(1,2,7,14)
d)n+5 chia hết cho n+1
=>(n+1)+4 chia hết cho n+1
=>n+1=Ư(4)=(1,2,4)
=>n=(0,1,3)
e)3n+4 chia hết cho n-1
=>3n-3+3+4 chia hết cho n-1
=>3.(n-1)+7 chia hết cho n-1
=>7 chia hết cho n-1
=>n-1=Ư(7)=1,7)
=>n=(2,8)
f)2n+1 chia hết cho 16-2n
=>2n+1>16-2n
=>2n+1-2n>16-2n-2n
=>1>16-4n
=>16n-4n=0
=>4n=16
=>n=4
Bài 1
A, tập hợp các ước của 20
Ư(20)={ 1; 2; 20; 10; 5; 4 }
=>2n+1 € các ước của 20
Rồi bạn thử từng trường hợp xong kết luân đến phần b
B làm giống a
Bài 2 sai đề bài bạn ơi
a) Vì 20 chia hết cho 2n+1 nên 2n+1 là ước của 20
Ư(20)={1;2;4;5;10;20}
Vì 2n+1 là ước của 20 nên ta có:
2n+1=1 (loại)
2n+1=2 (loại)
2n+1=4 (loại)
2n+1=5 => n=2
2n+1=10 (loại)
2n+1=20 (loại)
Vậy n={2}
b) Vì 12 chia hết cho n-1 nên n-1 là ước của 12
Ư(12)={1;2;3;4;6;12}
Vì n-1 là ước của 12 nên ta có:
n-1=1 => n=2
n-1=2 => n=3
n-1=3 => n=4
n-1=4 => n=5
n-1=6 => n=7
n-1=12 => n=13
Vậy n={2;3;4;5;7;13}
bài 1
a, \(A=\frac{3}{x-1}\)
Để A thuộc Z suy ra 3 phải chia hết cho x-1
Suy ra x-1 thuộc ước của 3
Suy ra x-1 thuộc tập hợp -3;-1;1;3
Suy ra x tuộc tập hợp -2;0;2;4
"nếu ko thích thì lập bảng" mấy ccaau kia tương tự
\(a,\)\(1,\)\(A=\frac{3}{x-1}\)
\(A\in Z\Leftrightarrow\frac{3}{x-1}\in Z\)\(\Rightarrow3\)\(⋮\)\(x-1\)
\(\Leftrightarrow x-1\inƯ_3\)
Mà \(Ư_3=\left\{1;3;-1;-3\right\}\)
\(...........\)
\(2,\)\(B=\frac{x-2}{x+3}\)
\(B\in Z\Leftrightarrow\frac{x-2}{x+3}\in Z\)\(\Rightarrow\frac{x+3-5}{x+3}\in Z\)\(\Rightarrow1-\frac{5}{x+3}\in Z\)
\(\Leftrightarrow\frac{5}{x+3}\in Z\)\(\Rightarrow5\)\(⋮\)\(x+3\)
Mà \(Ư_5=\left\{1;5;-1;-5\right\}\)
\(.....\)
\(3,\)\(C=\frac{x^2-1}{x+1}=\frac{\left(x-1\right)\left(x+1\right)}{x+1}=x-1\)
\(C\in Z\Leftrightarrow x-1\in Z\)
\(\Rightarrow x\in Z\)
Ta có: \(20^n+16^n-3n-1=\left(20^n-1\right)+\left(16^n-3^n\right)\)
Ta lại có: \(20^n-1⋮19\left(20-1=19\right)\)
và \(16^n-3^n⋮19\)(vì n chẵn)
nên \(20^n+16^n-3^n-1⋮19\)
Ta có: \(20^n+16^n-3n-1=\left(20^n-3^n\right)+\left(16^n-1\right)\)
mà \(20^n-3^n⋮17\left(20-3=17\right)\)
và \(16^n-1⋮17\)(vì n chẵn)
nên \(20^n+16^n-3^n-1⋮17\)
mà \(20^n+16^n-3^n-1⋮19\)(cmt)
và ƯCLN(17,19)=1
nên \(20^n+16^n-3^n-1⋮19\cdot17\)
hay \(20^n+16^n-3^n-1⋮323\)(đpcm)