Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
gọi n-1/n-2 là M.
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) ⋮⋮d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 ⋮⋮d
=> d ∈∈Ư (1)
Ư (1) = {1}
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
\(\frac{2n+3}{4n+1}\)= \(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1
=>n=1
mình ko chắc là đúng nha
Bài 1:
a; A = \(\dfrac{2n+1}{2n+2}\) (n \(\in\) N)
Gọi ước chung lớn nhất của 2n + 1 và 2n + 2 là d
Ta có: \(\left\{{}\begin{matrix}2n+1⋮d\\2n+2⋮d\end{matrix}\right.\)
⇒ 2n + 2 - 2n - 1 ⋮ d
(2n - 2n) + (2 - 1) ⋮ d
1 ⋮ d
d = 1
Vậy ước chung lớn nhất của 2n + 1 và 2n + 2 là 1
Hay A = \(\dfrac{2n+1}{2n+2}\) là phân số tối giản với mọi giá trị của số tự nhiên n.
Bài 1b
B = \(\dfrac{2n+3}{3n+5}\) (n \(\in\) N)
Gọi ước chung lớn nhất của 2n + 3 và 3n + 5 là d ta có:
\(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)
\(\left\{{}\begin{matrix}3.\left(2n+3\right)⋮d\\2.\left(3n+5\right)⋮d\end{matrix}\right.\)
\(\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)
6n + 10 - 6n - 9 ⋮ d
(6n - 6n) + (10 - 9) ⋮ d
1 ⋮ d
d = 1
Ước chung lớn nhất của 2n + 3 và 3n + 5 là 1
Hay B = \(\dfrac{2n+3}{3n+5}\) là phân số tổi giản với mọi số tự nhiên n
Ta có: theo bài ra \(\frac{2n+3}{4n+8}\)= \(\frac{1}{4}\)<=> 4(2n+3) = 4n+8 <=> 8n+12 = 4n+8 <=> 8n-4n = 8-12 <=> 4n = -1 <=> n = -1
gọi d là ước chung lớn nhất của 2n+3 và 4n+8.
suy ra ((4n+8) - (2n+3)) chia hết cho d
((4n+8) - (2n+3) + (2n+3)) chia hết cho d
(4n-8 - 2n-3 - 2n-3) chia hết cho d
2 chia hết cho d, suy ra d nhận giá trị 1;2. Mà d không thể bằng 2 (do 2n+3 lẻ với mọi số tự nhiên) nên d = 1. Vậy phân số đã cho tối giản.
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#