Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có:
\(\frac{n+1}{2n+3}\)là phân số tối giản thì:
\(\left(n+1;2n+3\right)=d\)
Điều Kiện;d thuộc N, d>0
=>\(\hept{\begin{cases}2n+3:d\\n+1:d\end{cases}}=>\hept{\begin{cases}2n+3:d\\2n+2:d\end{cases}}\)
=>2n+3-(2n+2):d
2n+3-2n-2:d
hay 1:d
=>d=1
Vỵ d=1 thì.....
Bài 2 :
Để A = (n+2) : (n-5) là số nguyên thì n+2 phải chia hết cho n-5
Mà n-5 chia hết cho n-5
=> (n+2) - (n-5) chia hết cho n-5
=> (n-n) + (2+5) chia hết cho n-5
=> 7 chia hết cho n-5
=> n-5 thuộc Ư(5) = { 1 : -1 ; 7 ; -7 }
Ta có bảng giá trị
n-5 | 1 | -1 | 7 | -7 |
n | 6 | 4 | 12 | -2 |
A | 8 | -6 | 2 | 0 |
KL | TMĐK | TMĐK | TMĐK | TMĐK |
Vậy với n thuộc { -2 ; 4 ; 6 ; 12 } thì A là số nguyên
Quy đồng: \(\frac{n}{n+1}\)= \(\frac{n\left(n+2\right)}{\left(n+1\right)\left(n+2\right)}\)=\(\frac{n^2.2n}{\left(n+1\right)\left(n+2\right)}\)
\(\frac{n+1}{n+2}\)= \(\frac{\left(n+1\right)\left(n+1\right)}{\left(n+1\right)\left(n+2\right)}\)= \(\frac{n^2+2n+1}{\left(n+1\right)\left(n+2\right)}\)
Vì n2+2n+1 < n2.2n+1 nên...
Vậy...
Ko chắc nha
Nghe nó ko có lý kiểu j j ý
Bài 1 : ( tớ làm 1 câu thui nhé, mấy câu kia tương tự )
\(a)\) Gọi \(ƯCLN\left(2n+1;4n+4\right)\) là d
\(\Rightarrow\)\(\hept{\begin{cases}\left(2n+1\right)⋮d\\\left(4n+4\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}4\left(2n+1\right)⋮d\\2\left(4n+4\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}\left(8n+4\right)⋮d\\\left(8n+8\right)⋮d\end{cases}}}\Rightarrow\left(8n+4-8n-8\right)⋮d\Rightarrow\left(-4\right)⋮d\)
\(\Rightarrow\)\(d\inƯ\left(-4\right)\)
Mà \(Ư\left(-4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Vì \(2n+1\) không chia hết cho \(2;-2;4;-4\) nên \(d\in\left\{1;-1\right\}\)
Vậy ...
Bài 2 :
\(a)\) Ta có :
\(1-\frac{13}{17}=\frac{4}{17}\)
\(1-\frac{25}{29}=\frac{4}{29}\)
Vì \(\frac{4}{17}>\frac{4}{29}\) nên \(\frac{13}{17}< \frac{25}{29}\)
Vậy ...
\(d)\) Đặt \(A=\frac{10^{2017}+1}{10^{2018}+1};B=\frac{10^{2016}+1}{10^{2017}+1}\) ta có :
\(A=\frac{10^{2017}+1}{10^{2018}+1}< \frac{10^{2017}+1+9}{10^{2018}+1+9}=\frac{10^{2017}+10}{10^{2018}+10}=\frac{10\left(10^{2016}+1\right)}{10\left(10^{2017}+1\right)}=\frac{10^{2016}+1}{10^{2017}+1}=B\)
Vậy \(A< B\)
a)Gọi d là ước chung của 2n+1 và 4n+4
Ta có 2n+1 chia hết cho d, 4n+4 chia hết cho d
Suy ra 4n+4-(4n+3 )chia hết cho d
4n+4-4n=3 chia hết cho d
Suy ra 1chia hết cho d
d=1
Vậy với mọi số tự nhiên n thì phân só trên đều thỏa mãn
Mấy câ tiếp theo tương tư
Muốn chứng mình được bài này thì phải chứng tỏ 1 chia hết cho ước chung của tử và mẫu