Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(5-xy\right)^2=25-10xy+x^2y^2\)
\(\left(3-2y\right)^2=9-12y+4y^2\)
\(\left(3+x^2\right)\left(3-x^2\right)=9-x^4\)
\(\left(5x-2y\right)\left(25x+10xy+4y^2\right)=\left(5x-2y\right)\left(5x+2y\right)=25x^2-4y^2\)\(\left(3x+y\right)\left(9x^2-3xy+y^2\right)=\left(3x+y\right)\left(3x-y\right)=9x^2-y^2\)
\(2x^2+9y^2-6xy+4x+5\)
\(=\left(x^2-6xy+9y^2\right)+\left(x^2+4x+4\right)+1\)
\(=\left(x-3y\right)^2+\left(x+2\right)^2+1>0\) ;\(\forall x;y\)
\(10x^2+10xy+25y^2-8x+20\)
\(=x^2+10xy+25y^2+9x^2-8x+\frac{16}{9}+\frac{164}{9}\)
\(=\left(x+5y\right)^2+\left(3x-\frac{4}{3}\right)^2+\frac{164}{9}>0\); \(\forall x;y\)
a, A=\(\left(2x^2y-4xy^3\right)-\left(3x^2y-2xy^3\right)\)
= \(2x^2y-2xy^3-3x^2y+2xy^3\)
= \(2x^2y-3x^2y-2xy^3+2xy^3\)
=\(-1x^2y-0\)
=\(-1x^2y\)
Bn tự làm tiếp nhé
Bài 1:
a) \(x^2+10x+26+y^2+2y=(x^2+10x+25)+(y^2+2y+1)\)
..................................................= \(\left(x+5\right)^2+\left(y+1\right)^2\)
b) \(z^2-6z+5-t^2-4t=(z^2-6t+9)-(t^2+4t+4)\)
............................................= \(\left(z-3\right)^2-\left(t+2\right)^2\)
c) \(x^2-2xy+2y^2+2y+1=(x^2-2xy+y^2)+(y^2+2y+1)\)
..................................................= \(\left(x-y\right)^2+\left(y+1\right)^2\)
d) \(4x^2-12x-y^2+2y+8=\left(4x^2-12x+9\right)-\left(y^2-2y+1\right)\)
.................................................= \(\left(2x-3\right)^2-\left(y-1\right)^2\)
Bài 2:
a) \(\left(x+y+4\right)\left(x+y-4\right)=\left(x+y\right)^2-16\)
b) \(\left(x-y+6\right)\left(x+y-6\right)=x^2-\left(y-6\right)^2\)
c) \(\left(y+2z-3\right)\left(y-2z+3\right)=y^2-\left(2z-3\right)^2\)
d) \(\left(x+2y+3z\right)\left(2y+3z-x\right)=\left(2y+3z\right)^2-x^2\)
\(x^2+2xy+x+2y\)
\(=x\left(x+1\right)+2y\left(x+1\right)\)
\(=\left(x+1\right)\left(2y+x\right)\)
\(7x^2-7xy-5x+5y\)
\(=7x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(7x-5\right)\)
a)x2+2xy+x+2y
=(2xy+x2)+(2y+x)
=x(2y+x)+(2y+x)
=(x+1)(2y+x)
b)7x2-7xy-5x+5y
=(5y-7xy)+(7x2-5x)
=y(5-7x)-x(5-7x)
=(5-7x)(y-x)
c)x2-6x+9-9y2
=(x2+3xy-3x)-(3xy+9y2-9y)-(3x+9y-9)
=x(x+3y-3)-3y(x+3y-3)-3(x+3y-3)
=(x-3y-3)(x+3y-3)
d)x3-3x2+3x-1+2(x2-x)
Ta thấy x=1 là nghiệm của đa thức
=>đa thức có 1 hạng tử là x-1
=(x-1)(x2+1)
e) (x+y)(y+z)(z+x)+xyz
đề sai
f)x(y2-z2)+y(z2-x2)
=(xy2+yz2)+(x2y+xz2)
=y(xy+z2)-x(xy+z2)
=(y-x)(xy+z2)
a) \(P+\left(4x^2-5xy-y^2\right)=5x^2+10xy-2y^2\)
\(P=5x^2+10xy-2y^2-4x^2+5xy+y^2\)
\(P=x^2+15xy-y^2\)
Vậy....
b) \(\left(2xy+y^2\right)-P=3x^2-6xy+y^2\)
\(P=2xy+y^2-3x^2+6xy-y^2\)
\(P=-3x^2+8xy\)
Vậy....
a) P + ( 4x2 - 5xy - y2 ) = 5x2 + 10xy - 2y2
<=> P = 5x2 + 10xy - 2y2 - ( 4x2 - 5xy - y2 )
= 5x2 + 10xy - 2y2 - 4x2 + 5xy + y2
= x2 + 15xy - y2
b) ( 2xy + y2 ) - P = 3x2 -6xy + y2
<=> P = ( 2xy + y2) - ( 3x2 - 6xy + y2 )
= 2xy + y2 - 3x2 + 6xy -y2
= 8xy - 3x2
Ta có : E = (x - 1) (x + 2)(x + 3)(x + 6)
=> E = [(x - 1)(x + 6)][(x + 2)(x + 3)]
=> E = (x2 + 5x - 6)(x2 + 5x + 6)
=> E = (x2 + 5x)2 - 62
=> E = (x2 + 5x)2 - 36
Mà : (x2 + 5x)2 \(\ge0\forall x\)
Nên : (x2 + 5x)2 - 36 \(\ge-36\forall x\)
Vậy GTNN của biểu thức là 36 tại x2 + 5x = 0 => x(x + 5) = 0 => x = 0 ; -5
Bài 1: Viết các biểu thức sau dưới dạng bình phương của 1 tổng hoặc 1 hiệu
a) \(4x^2-12xy+9y^2=\left(2x\right)^2-2.2x.3y+\left(3y\right)^2=\left(2x-3y\right)^2\)
b) \(25x^2-20xy+4y^2=\left(5x\right)^2-2.5x.2y+\left(2y\right)^2=\left(5x-2y\right)^2\)
c) \(9x^2+y^2-6xy=\left(3x\right)^2-2.3xy+y^2=\left(3x-y\right)^2\)
d) \(x^2+6xy+9y^2=x^2+2x.3y+\left(3y\right)^2=\left(x+3y\right)^2\)
e) \(x^2-10xy+25y^2=x^2-2x.5y+\left(5y\right)^2=\left(x-5y\right)^2\)
g) \(\left(3x+2y\right)^2+2\left(3x+2y\right)+1=\left(3x+2y+1\right)^2\)
Câu cuối mình sửa lại đề nhé bạn! Nếu để như trên đề thì không thể viết đáp án dưới dạng bình phương của 1 tổng hoặc 1 hiệu được.
\(4x^2-12xy+9y^2=\left(2x-3y\right)^2\)
\(25x^2-20xy+4y^2=\left(5x-2y\right)^2\)
\(9x^2+y^2-6xy=\left(3x-y\right)\)
\(x^2+6xy+9y^2=\left(x+3y\right)^2\)
\(x^2-10xy+25y^2=\left(x-5y\right)^2\)
\(\left(3x+2y\right)+2\left(3x+2y\right)+1=3\left(3x+2y\right)+1=9x+6y+1\)