K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

1) Ta có: \(3-2\sqrt{2}\)

\(=2-2\cdot\sqrt{2}\cdot1+1\)

\(=\left(\sqrt{2}-1\right)^2\)

2) Ta có: \(8+2\sqrt{7}\)

\(=7+2\cdot\sqrt{7}\cdot1+1\)

\(=\left(\sqrt{7}+1\right)^2\)

3) Ta có: \(x-2\sqrt{x-1}\)

\(=x-1-2\cdot\sqrt{x-1}\cdot1+1\)

\(=\left(\sqrt{x-1}-1\right)^2\)

4) Ta có: \(6-4\sqrt{2}\)

\(=4-2\cdot2\cdot\sqrt{2}+2\)

\(=\left(2-\sqrt{2}\right)^2\)

5) Ta có: \(7+4\sqrt{3}\)

\(=4+2\cdot2\cdot\sqrt{3}+3\)

\(=\left(2+\sqrt{3}\right)^2\)

6) Ta có: \(9-4\sqrt{5}\)

\(=5-2\cdot\sqrt{5}\cdot2+4\)

\(=\left(\sqrt{5}-2\right)^2\)

7) Ta có: \(10+2\sqrt{21}\)

\(=7+2\cdot\sqrt{7}\cdot\sqrt{3}+3\)

\(=\left(\sqrt{7}+\sqrt{3}\right)^2\)

8) Ta có: \(49+20\sqrt{6}\)

\(=25+2\cdot5\cdot2\sqrt{6}+24\)

\(=\left(5+2\sqrt{6}\right)^2\)

9 tháng 6 2018

a) ( x - 3)4 + ( x - 5)4 = 82

Đặt : x - 4 = a , ta có :

( a + 1)4 + ( a - 1)4 = 82

⇔ a4 + 4a3 + 6a2 + 4a + 1 + a4 - 4a3 + 6a2 - 4a + 1 = 82

⇔ 2a4 + 12a2 - 80 = 0

⇔ 2( a4 + 6a2 - 40) = 0

⇔ a4 - 4a2 + 10a2 - 40 = 0

⇔ a2( a2 - 4) + 10( a2 - 4) = 0

⇔ ( a2 - 4)( a2 + 10) = 0

Do : a2 + 10 > 0

⇒ a2 - 4 = 0

⇔ a = + - 2

+) Với : a = 2 , ta có :

x - 4 = 2

⇔ x = 6

+) Với : a = -2 , ta có :

x - 4 = -2

⇔ x = 2

KL.....

b) ( n - 6)( n - 5)( n - 4)( n - 3) = 5.6.7.8

⇔ ( n - 6)( n - 3)( n - 5)( n - 4) = 1680

⇔ ( n2 - 9n + 18)( n2 - 9n + 20) = 1680

Đặt : n2 - 9n + 19 = t , ta có :

( t - 1)( t + 1) = 1680

⇔ t2 - 1 = 1680

⇔ t2 - 412 = 0

⇔ ( t - 41)( t + 41) = 0

⇔ t = 41 hoặc t = - 41

+) Với : t = 41 , ta có :

n2 - 9n + 19 = 41

⇔ n2 - 9n - 22 = 0

⇔ n2 + 2n - 11n - 22 = 0

⇔ n( n + 2) - 11( n + 2) = 0

⇔ ( n + 2)( n - 11) = 0

⇔ n = - 2 hoặc n = 11

+) Với : t = -41 ( giải tương tự )

8 tháng 6 2018

@Giáo Viên Hoc24.vn

@Giáo Viên Hoc24h

@Giáo Viên

@giáo viên chuyên

@Akai Haruma

21 tháng 9 2017

14dm5cm=14,5dm;3dm7cm=3,7dm

chu vi hình chữ nhật đó là:

(14,5+3,7)x2=36,4(dm)

ĐS:36,4dm

21 tháng 9 2017

14 dm 5 cm = 14,5 dm 

3 dm 7 cm = 3,7 dm 

Chiều rộng HCN là :

14,5 - 3,7 = 10,8 ( dm )

chu vi HCN là :

( 14,5 + 10,8 ) x 2 = 50,6 ( dm )

ĐS:..

16 tháng 1 2017

\(\left(1+1+1\right)!=6.\)

\(2+2+2=6\)

\(3.3-3=6\)

\(\sqrt{4}+\sqrt{4}.\sqrt{4}=6\)

\(5+5\div5=6\)

\(6.6\div6=6\)

\(7-7\div7=6\)

\(\sqrt{8+8\div8}!=6\)

\(\sqrt{9}.\sqrt{9}-\sqrt{9}=6\)

\(\sqrt{10-10\div10}!\)

23 tháng 8 2023

a) \(6\sqrt{x-1}-\dfrac{1}{3}\cdot\sqrt{9x-9}+\dfrac{7}{2}\sqrt{4x-4}=24\) (ĐK: \(x\ge1\)

\(\Leftrightarrow6\sqrt{x-1}-\dfrac{1}{3}\cdot\sqrt{9\left(x-1\right)}+\dfrac{7}{2}\sqrt{4\left(x-1\right)}=24\)

\(\Leftrightarrow6\sqrt{x-1}-\dfrac{1}{3}\cdot3\sqrt{x-1}+\dfrac{7}{2}\cdot2\sqrt{x-1}=24\)

\(\Leftrightarrow6\sqrt{x-1}-\sqrt{x-1}+7\sqrt{x-1}=24\)

\(\Leftrightarrow12\sqrt{x-1}=24\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{24}{12}\)

\(\Leftrightarrow\sqrt{x-1}=2\)

\(\Leftrightarrow x-1=4\)

\(\Leftrightarrow x=4+1\)

\(\Leftrightarrow x=5\left(tm\right)\)

b) \(\dfrac{1}{2}\sqrt{4x+8}-2\sqrt{x+2}-\dfrac{3}{7}\sqrt{49x+98}=-8\) (ĐK: \(x\ge-2\))

\(\Leftrightarrow\dfrac{1}{2}\cdot2\sqrt{x+2}-2\sqrt{x+2}-\dfrac{3}{7}\cdot7\sqrt{x+2}=-8\)

\(\Leftrightarrow\sqrt{x+2}-2\sqrt{x+2}-3\sqrt{x+2}=-8\)

\(\Leftrightarrow-4\sqrt{x+2}=-8\)

\(\Leftrightarrow\sqrt{x+2}=\dfrac{-8}{-4}\)

\(\Leftrightarrow\sqrt{x+2}=2\)

\(\Leftrightarrow x+2=4\)

\(\Leftrightarrow x=4-2\)

\(\Leftrightarrow x=2\left(tm\right)\)

6:ĐKXĐ: x>=0; x<>1/25

BPT=>\(\dfrac{3\sqrt{x}}{5\sqrt{x}-1}+3< =0\)

=>\(\dfrac{3\sqrt{x}+15\sqrt{x}-5}{5\sqrt{x}-1}< =0\)

=>\(\dfrac{18\sqrt{x}-5}{5\sqrt{x}-1}< =0\)

=>\(\dfrac{1}{5}< \sqrt{x}< =\dfrac{5}{18}\)

=>\(\dfrac{1}{25}< x< =\dfrac{25}{324}\)

7:

ĐKXĐ: x>=0

BPT \(\Leftrightarrow\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}>\dfrac{8}{3}:\dfrac{8}{3}=1\)

=>\(\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}-1>=0\)

=>\(\dfrac{\sqrt{x}+1-2\sqrt{x}-3}{2\sqrt{x}+3}>=0\)

=>\(-\sqrt{x}-2>=0\)(vô lý)

8:

ĐKXĐ: x>=0; x<>9/4

BPT \(\Leftrightarrow\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}+4< 0\)

=>\(\dfrac{\sqrt{x}-2+8\sqrt{x}-12}{2\sqrt{x}-3}< 0\)

=>\(\dfrac{9\sqrt{x}-14}{2\sqrt{x}-3}< 0\)

TH1: 9căn x-14>0 và 2căn x-3<0

=>căn x>14/9 và căn x<3/2

=>14/9<căn x<3/2

=>196/81<x<9/4

TH2: 9căn x-14<0 và 2căn x-3>0

=>căn x>3/2 hoặc căn x<14/9

mà 3/2<14/9

nên trường hợp này Loại

9: 

ĐKXĐ: x>=0

\(BPT\Leftrightarrow\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}< =-\dfrac{1}{3}\)

=>\(\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}+\dfrac{1}{3}< =0\)

=>\(\dfrac{6\sqrt{x}+9+5\sqrt{x}+7}{3\left(5\sqrt{x}+7\right)}< =0\)

=>\(\dfrac{11\sqrt{x}+16}{3\left(5\sqrt{x}+7\right)}< =0\)(vô lý)

10: 

ĐKXĐ: x>=0; x<>1/49

\(BPT\Leftrightarrow\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}+6>0\)

=>\(\dfrac{6\sqrt{x}-2+42\sqrt{x}-6}{7\sqrt{x}-1}>0\)

=>\(\dfrac{48\sqrt{x}-8}{7\sqrt{x}-1}>0\)

=>\(\dfrac{6\sqrt{x}-1}{7\sqrt{x}-1}>0\)

TH1: 6căn x-1>0 và 7căn x-1>0

=>căn x>1/6 và căn x>1/7

=>căn x>1/6

=>x>1/36

TH2: 6căn x-1<0 và 7căn x-1<0

=>căn x<1/6 và căn x<1/7

=>căn x<1/7

=>0<=x<1/49

30 tháng 8 2023

câu 9 nhầm đề bài r bạn

 

23 tháng 8 2023

a) \(15\sqrt{\dfrac{4}{3}}-5\sqrt{48}+2\sqrt{12}-6\sqrt{\dfrac{1}{3}}\)

\(=\sqrt{15^2\cdot\dfrac{4}{3}}-5\cdot4\sqrt{3}+2\cdot2\sqrt{3}-\sqrt{6^2\cdot\dfrac{1}{3}}\)

\(=\sqrt{\dfrac{225\cdot4}{3}}-20\sqrt{3}+4\sqrt{3}-\sqrt{\dfrac{36}{3}}\)

\(=\sqrt{75\cdot4}-16\sqrt{3}-\sqrt{12}\)

\(=10\sqrt{3}-16\sqrt{3}-2\sqrt{3}\)

\(=-8\sqrt{3}\)

b) \(\dfrac{15}{\sqrt{6}+1}-\dfrac{3}{\sqrt{7}-\sqrt{2}}-15\sqrt{6}+3\sqrt{7}\)

\(=\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\dfrac{3\left(\sqrt{7}+\sqrt{2}\right)}{\left(\sqrt{7}-\sqrt{2}\right)\left(\sqrt{7}+\sqrt{2}\right)}-15\sqrt{6}+3\sqrt{7}\)

\(=\dfrac{15\left(\sqrt{6}-1\right)}{6-1}-\dfrac{3\sqrt{7}+3\sqrt{2}}{7-2}-15\sqrt{6}+3\sqrt{7}\)

\(=3\left(\sqrt{6}-1\right)-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}-15\sqrt{6}+3\sqrt{7}\)

\(=3\sqrt{6}-3-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}-15\sqrt{6}+3\sqrt{7}\)

\(=-12\sqrt{6}-3+3\sqrt{7}-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}\)

\(=\dfrac{-60\sqrt{6}-15+15\sqrt{7}-3\sqrt{7}-3\sqrt{2}}{5}\)

\(=\dfrac{-60\sqrt{6}-15+12\sqrt{7}-3\sqrt{2}}{5}\)

1 tháng 7 2021

`sqrt{5+2sqrt6}`

`=sqrt{3+2sqrt3sqrt2+2}`

`=sqrt{(sqrt3+sqrt2)^2}`

`=|sqrt3+sqrt2|=sqrt3+sqrt2`

1 tháng 7 2021

`7. sqrt(4+2sqrt3)`

`=sqrt{3+2sqrt3+1}`

`=sqrt{(sqrt3+1)^2}`

`=sqrt3+1`

`8. sqrt(4-2sqrt3)`

`=sqrt{3-2sqrt3+1}`

`=sqrt{(sqrt3-1)^2}`

`=sqrt3-1`

`9. sqrt(11-2sqrt(30))`

`=sqrt{6-2sqrt5sqrt6+5}`

`=sqrt{(sqrt6-sqrt5)^2}`

`=sqrt6-sqrt5`

`10. sqrt(21-4sqrt(17))`

`=sqrt{17-2.2.sqrt{17}+4}`

`=sqrt{(sqrt{17}-2)^2}`

`=sqrt{17}-2`