Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4
Do 288 chia n dư 38=>250 chia hết cho n (1)
=> n > 38 (2)
Do 414 chia n dư 14=> 400 chia hết cho n (3)
Từ (1), (2), (3)=>n thuộc Ư(250,400;n>39)
=> n=50
1
x+15 chia hết cho x+2
x+2 chia hết cho x+2
=> x+15-(x+2) chia hết ch0 x+2
=>13 chia hết cho x+2
Do x thuộc N => x+2>= 0+2=2
Mà 13 chia hết cho 1 và 13
=> x+2 = 13
=> x=11
có : ba số 7,6,2 có tổng là 15 mà 15chia hết cho 3 nhưng 0 chia hết cho 9
ta có các số : 762,726,276,267,627,672
A={108 , 117 , 126, 135, 144}
2S=2+22+...........+28
=> S= 28-1
S= 255
Ta có ( 2+5+5=12 mà 12chia hết cho 3
=> S chia hết cho 3
bai 1 :x la so chan (chia het cho 2)
x la so le (khong chia het cho 2
bai 2:tong cua 5 so tu nhien lien tiep chia het cho 5 vi tong 5 so tu nhien lien tiep la so co tan cung 0,5
bai 3:b,xy+yx=(x nhan 10)+y+(y nhan 10)+x=10x+y+10y+x=11x+11y.11x va 11y chia het cho 11. vay xy+yx chia het cho 11
bài 4
Các số chia hết cho 2 nhưng không chia hết cho 5 có tận cùng 2, 4, 6, 8 ; mỗi chục có bốn số đó.
Từ 0 đến 999 có 100 chục nên có :
4.100 = 400 (số).
Vậy trong các số tự nhiên nhỏ hơn 1000, có 400 số chia hết cho 2 nhưng ko chia hết cho 5
bài 5
Gọi thương của số tự nhiên x tuần tự là a và b
Theo đề, ta có:
x = 4a + 1
x = 25b + 3
<=> 4a + 1 = 25b + 3
4a = 25b + 2
a = (25b + 2)/4
b = 2 ; a = 13 <=> x = 53
b = 6 ; a = 38 <=> x = 153
b = 10 ; a = 63 <=> x = 253
b = 14 ; a = 88 <=> x = 353
b = 18 ; a = 113 <=> x = 453
Đáp số: Tất cả các số tự nhiên, tận cùng là 53 đều thoả mãn điều kiện.
a) Số chia hết cho 9 là số có tổng các chữ số của nó chia hết cho 9, tổng nhỏ nhất khác 0 chia hết cho 9 là 9.
Số có 6 chữ số bé nhất có tổng các chữ số chia hết cho 9 là: 100008
b) Tương tự câu a, số có 6 chữ số bé nhất chia hết cho 3 mà không chia hết cho 9 là: 100002
c) Từ 1 đến 1000 có số các số là: (1000 - 1) : 1 + 1 = 1000 số
Số các số chia chia hết cho 2 (tức là số chẵn) bằng số các số lẻ và bằng 1000 : 2 = 500 số
2) Nhóm 2 số hạng của A ta thấy:
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{150}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{119}\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{119}.3\)
\(=\left(2+2^3+...+2^{119}\right).3\)
Số A chia hết cho 3 vì nó là tích của một số với số 3.
Tương tự nhóm 3 số hạng với nhau thì thi chứng minh được A chia hết cho \(1+2+2^2=7\).