Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Gọi \(I\left(x;y\right)\) là tâm đường tròn \(\Rightarrow\overrightarrow{AI}=\left(x-1;y-3\right)\)
Do đường tròn tiếp xúc với \(d_1;d_2\) nên:
\(d\left(I;d_1\right)=d\left(I;d_2\right)\Rightarrow\dfrac{\left|5x+y-3\right|}{\sqrt{26}}=\dfrac{\left|2x-7y+1\right|}{\sqrt{53}}\)
Chà, đề đúng ko em nhỉ, thế này thì vẫn làm được nhưng rõ ràng nhìn 2 cái mẫu kia thì số liệu sẽ xấu 1 cách vô lý.
2.
Phương trình đường thẳng kia là gì nhỉ? \(2x+y=0\) à?
Câu 32:
Gọi M là giao điểm d1;d2 thì tọa độ M là nghiệm của hệ:
\(\left\{{}\begin{matrix}3x-5y+2=0\\5x-2y+4=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{16}{19};-\frac{2}{19}\right)\)
Do d song song d3 nên d nhận \(\left(2;-1\right)\) là 1 vtpt
Phương trình d:
\(2\left(x+\frac{16}{19}\right)-1\left(y+\frac{2}{19}\right)=0\Leftrightarrow2x-y+\frac{30}{19}=0\)
Câu 33:
\(\overrightarrow{BC}=\left(1;-2\right)\)
Do AH vuông góc BC nên AH nhận \(\left(1;-2\right)\) là 1 vtpt
Phương trình AH:
\(1\left(x+1\right)-2\left(y-2\right)=0\Leftrightarrow x-2y+5=0\)
Câu 34:
Tọa độ M là: \(M\left(\frac{3}{2};4\right)\)
\(\overrightarrow{CM}=\left(-\frac{3}{2};6\right)=-\frac{3}{2}\left(1;-4\right)\)
Phương trình tham số CM: \(\left\{{}\begin{matrix}x=3+t\\y=-2-4t\end{matrix}\right.\)
Câu 30:
\(\overrightarrow{AB}=\left(-2;0\right)=-2\left(1;0\right)\) nên đường thẳng AB nhận \(\left(1;0\right)\) là 1 vtcp
Phương trình AB: \(\left\{{}\begin{matrix}x=1+t\\y=-7\end{matrix}\right.\)
Cả 4 đáp án đều ko chính xác
Câu 31:
Gọi M là trung điểm AB \(\Rightarrow M\left(-1;1\right)\)
\(\overrightarrow{AB}=\left(-6;-4\right)=-2\left(3;2\right)\Rightarrow\) đường trung trực AB nhận \(\left(3;2\right)\) là 1vtpt
Phương trình:
\(3\left(x+1\right)+2\left(y-1\right)=0\Leftrightarrow3x+2y+1=0\)
a) Phương trình đường tròn \(\left( C \right)\) là: \({\left( {x + 2} \right)^2} + {\left( {y - 5} \right)^2} = 49\).
b) Bán kính đường tròn là: \(R = IA = \sqrt {{{\left( { - 2 - 1} \right)}^2} + {{\left( {2 - \left( { - 2} \right)} \right)}^2}} = 5\)
Phương trình đường tròn là: \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 25\)
c) Gọi \(I\left( {a;b} \right)\) là trung điểm AB. Vậy tọa độ điểm I là: \(I\left( { - 2;1} \right)\)
Bán kính đường tròn là: \[R = IA = \sqrt {{{\left( { - 1 + 2} \right)}^2} + {{\left( { - 3 - 1} \right)}^2}} = \sqrt {17} \]
Phương trình đường tròn là: \({\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} = 17\)
d) Bán kính đường tròn là: \(R = \frac{{\left| {1 + 2.3 + 3} \right|}}{{\sqrt {{1^2} + {2^2}} }} = 2\sqrt 5 \)
Phương trình đường tròn là: \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} = 20\)
Giả sử (C) tâm I ; BK R
\(I\in d':2x+y=0\) \(\Rightarrow I\left(t;-2t\right)\)
\(\Rightarrow R^2=IA^2=\left(t-4\right)^2+\left(-2t-2\right)^2\) \(=5t^2+20\)
Ta có : \(IA=\dfrac{\left|t-7.\left(-2t\right)+10\right|}{\sqrt{1+7^2}}\) \(\Rightarrow IA^2=\dfrac{\left(15t+10\right)^2}{50}=\dfrac{\left(3t+2\right)^2}{2}\)
Suy ra : \(5t^2+20=\dfrac{\left(3t+2\right)^2}{2}\) \(\Leftrightarrow10t^2+40=9t^2+12t+4\)
\(\Leftrightarrow t^2-12t+36=0\) \(\Leftrightarrow t=6\)
Suy ra : \(I\left(6;-12\right)\) ; \(R^2=200\)
PT (C) : \(\left(x-6\right)^2+\left(y+12\right)^2=200\)
Do I thuộc \(2x+y=0\) nên tọa độ có dạng \(I\left(x;-2x\right)\)
Đường thẳng \(d_1\) qua A và vuông góc (d) có pt:
\(7\left(x-4\right)+1\left(y-2\right)=0\Leftrightarrow7x+y-30=0\)
Do (C) tiếp xúc (d) tại A nên I thuộc \(d_1\)
Thay tọa độ I vào pt \(d_1\Rightarrow7x+\left(-2x\right)-30=0\Rightarrow x=6\)
\(\Rightarrow I\left(6;-12\right)\Rightarrow R^2=IA^2=200\)
Phương trình: \(\left(x-6\right)^2+\left(y+12\right)^2=200\)