Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^2+10x+26+y^2+2y\)
\(=x^2+2.5x+25+1+y^2+2y\)
\(=\left(x^2+2.5x+25\right)+\left(1+2y+y^2\right)\)
\(=\left(x+5\right)^2+\left(1+y\right)^2\)
b) \(x^2-2xy+2y^2+2y+1\)
\(=x^2-2xy+y^2+y^2+2y+1\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)\)
\(=\left(x-y\right)^2+\left(y+1\right)^2\)
c) \(z^2-6z+13+t^2+4t\)
\(=z^2-2.3z+9+4+t^2+4t\)
\(=\left(z^2-2.3x+9\right)+\left(4+4t+t^2\right)\)
\(=\left(z-3\right)^2+\left(2+t\right)^2\)
d) \(4x^2+2z^2-4xz-2z+1\)
\(=4x^2+z^2+z^2-4xz-2z+1\)
\(=\left(4x^2-4xz+z^2\right)+\left(z^2-2z+1\right)\)
\(=\left(2x-z\right)^2+\left(z-1\right)^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
bài 1:
a) x2 + 10x + 26 + y2 + 2y
= (x2 + 10x + 25) + (y2 + 2y + 1)
= (x + 5)2 + (y + 1)2
b) z2 - 6z + 5 - t2 - 4t
= (z - 3)2 - (t + 2)2
c) x2 - 2xy + 2y2 + 2y + 1
= (x2 - 2xy + y2) + (y2 + 2y + 1)
= (x - y)2 + (y + 1)2
d) 4x2 - 12x - y2 + 2y + 1
= (4x2 - 12x ) - (y2 + 2y + 1)
= ......................................
ok mk nhé!! 4545454654654765765767587876968345232513546546575675767867876876877687975675
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a) -16 +(x-3)2
<=> (x-3)2-16
<=> (x-3)2 -42
<=> (x-3-4)(x-3+4)
<=> (x-7)(x+1)
b) 64+16y+y2
<=> y2 + 2.8.y + 82
<=> (y+8)2
c) \(\dfrac{1}{8}-8x^3\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^3-\left(2x\right)^3\)
\(\Leftrightarrow\left(\dfrac{1}{2}-2x\right)\left(\dfrac{1}{4}+x+4x^2\right)\)
d)\(x^2-x+\dfrac{1}{4}\)
\(\Leftrightarrow x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2\)
e) x4 + 4x2 + 4
<=> (x2)2 + 2.2.x2 +22
<=> (x2 + 2)2
g)\(8x^3+60x^2y+150xy^2+125y^3\)
\(\Leftrightarrow\left(2x+5y\right)^3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
a: \(C=a^2+b^2=\left(a+b\right)^2-2ab=23^2-2\cdot132=265\)
b: \(D=x^3+y^3+3xy\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)
\(=1-3xy+3xy=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(x^2+2y+1=0;y^2+2z+1=0;z^2+2x+1=0\)
\(\Rightarrow x^2+2y+1=y^2+2z+1=z^2+2x+1\)
\(\Rightarrow x^2+2y+1-y^2-2z-1-z^2-2x-1=0\)
\(\Rightarrow\left(x^2-2x+1\right)-\left(y^2-2y+1\right)-\left(z^2+2z+1\right)=0\)
\(\Rightarrow\left(x-1\right)^2-\left(y-1\right)^2-\left(z+1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-1\right)^2=0\\\left(z+1\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-1=0\\y-1=0\\z+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=1\\z=-1\end{cases}}\)
Thay \(x=1;y=1;z=-1\)vào A ta có :
\(A=1^{2015}+1^{2016}+\left(-1\right)^{2017}=1+1-1=1\)
Vậy A = 1
Từ \(\hept{\begin{cases}x^2+2y+1=0\\y^2+2z+1=0\\z^2+2x+1=0\end{cases}}\)
\(\Rightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0\)
\(\Rightarrow\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(z^2+2z+1\right)=0\)
\(\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\left(1\right)\)
Vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(y+1\right)^2\ge0\forall y\\\left(z+1\right)^2\ge0\forall z\end{cases}\left(2\right)}\)
Từ \(\left(1\right)\)và \(\left(2\right)\):
\(\Rightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y+1\right)^2=0\\\left(z+1\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+1=0\\y+1=0\\z+1=0\end{cases}}\)
\(\Rightarrow x=y=z=-1\)
\(\Rightarrow A=\left(-1\right)^{2015}+\left(-1\right)^{2016}+\left(-1\right)^{2017}=-1+1-1=-1\)
Vậy \(A=-1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\Rightarrow\left(x^2+2\times5x+25\right)+\left(y^2+2y+1\right)\)
\(\Rightarrow\left(x+5\right)^2+\left(y+1\right)^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
20182 - 20172 + 20162 - 20152 + ... + 22 - 12
= (2018+2017)(2018-2017) + (2016+2015)(2016-2015) + ... + (2+1)(2-1)
= 2018 + 2017 + 2016 + 2015 + ... + 2 + 1
= \(\dfrac{\left(1+2018\right).2018}{2}=2037171\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2018^2-2017^2+2016^2-2015^2+...+2^2-1^2\)
\(=\left(2018+2017\right)\left(2018-2017\right)+\left(2016+2015\right)\left(2016-2015\right)+...+\left(2+1\right)\left(2-1\right)\)
\(=4035+4031+...+3\)
Từ 3 đến 4035 có số lượng số hạng là:
\(\left(4035-3\right):4+1=1009\)
Ta có:
\(4035+4031+....+3\)
\(=\dfrac{\left(4035+3\right).1009}{2}=2037171\)
Chúc bạn học tốt!!!
Bài 1:
a, \(x^2+10x+26+y^2+2y\)
\(=x^2+2.x.5+5^2+y^2+2.y.1+1^2\)
\(=\left(x+5\right)^2+\left(y+1\right)^2\)
b, \(x^2-2xy+2y^2+2y+1\)
\(=x^2-2.x.y+y^2+y^2+2.y.1+1^2\)
\(=\left(x-y\right)^2+\left(y+1\right)^2\)
c, \(4x^2+2z^2-4xz-2z+1\)
\(=\left(2x\right)^2-2.2x.z+z^2+z^2-2.z.1+1^2\)
\(=\left(2x-z\right)^2+\left(z-1\right)^2\)
Chúc bạn học tốt!!!
Bài1:
Bn kia giải r nhé
Bài 2:
a)\(127^2+146.127+73^2=127^2+2.73.127+73^2\)
=\(\left(127+73\right)^2=200^2=40000\)
b)\(31,8^2-63,6.21,8+21,8^2=\left(31,8-21,8\right)^2=10^2=100\)
c)\(2018^2-2017^2+2016^2-2015^2+...+2^2-1\)
=\(\left(2018+2017\right)+\left(2015+2016\right)+...+\left(2+1\right)\)
=4025+4031+...+3
=...(bn tự tính)
d)\(2017^2-2016.2018=2017^2-\left(2017^2-1\right)=1\)