Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì hai túi là khác nhau nên biến cố lấy một viên bi mỗi túi là độc lập.
Gọi biến cố A: “Hai viên bi được lấy có cùng màu xanh”, biến cố B: “Hai viên bi được lấy có cùng màu đỏ”, biến cố C: “Hai viên bi được lấy có cùng màu”
a) Xác suất lấy được viên bi màu xanh từ túi I là \(\frac{3}{{10}}\)
Xác suất lấy được viên bi màu xanh từ túi II là \(\frac{{10}}{{16}} = \frac{5}{8}\)
Xác suất lấy được hai viên bi cùng màu xanh là \(\frac{3}{{10}}.\frac{5}{8} = \frac{3}{{16}}\)
b) Xác suất lấy được viên bi màu đỏ từ túi I là \(\frac{7}{{10}}\)
Xác suất lấy được viên bi màu đỏ từ túi II là \(\frac{6}{{16}} = \frac{3}{8}\)
Xác suất lấy được hai viên bi cùng màu đỏ là \(\frac{7}{{10}}.\frac{3}{8} = \frac{{21}}{{80}}\)
c) Ta có \(C = A \cup B\) mà A và B xung khắc nên
\(P\left( C \right) = P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) = \frac{3}{{16}} + \frac{{21}}{{80}} = \frac{9}{{20}}\)
Vậy xác suất để hai viên bi được lấy có cùng màu là \(\frac{9}{{20}}.\)
d) Gọi biến cố D: “Hai viên bi được lấy không cùng màu”
Khi đó \(\overline D = C\)
\( \Rightarrow P\left( D \right) = 1 - P\left( {\overline D } \right) = 1 - P\left( C \right) = 1 - \frac{9}{{20}} = \frac{{11}}{{20}}\)
Vậy xác suất để hai viên bi được lấy không cùng màu là \(\frac{{11}}{{20}}.\)
Gọi A là biến cố: “trong số 7 viên bi được lấy ra có ít nhất 1 viên bi màu đỏ.”
Trong hộp có tất cả: 5+ 15 + 35 = 55 viên bi
- Số phần tử của không gian mẫu: Ω = C 55 7 .
- A ¯ là biến cố: “trong số 7 viên bi được lấy ra không có viên bi màu đỏ nào.”
=> n A ¯ = C 20 7 .
Vì A và A ¯ là hai biến cố đối nên: n A = Ω − n A ¯ = C 55 7 − C 20 7 .
Xác suất để trong số 7 viên bi được lấy ra có ít nhất 1 viên bi màu đỏ là P A = C 55 7 − C 20 7 C 55 7 .
Chọn đáp án B.
đề nghị khi đăng câu hỏi nên ấn 1 lần, sau ns sẽ hiện ra, tốn S ==
Lấy ngẫu nhiên đồng thời 2 thẻ trong tổng số 50 thẻ từ hộp có \({C}_{50}^2 = 1225\) cách.
a) Gọi \(C\) là biến cố “2 thẻ lấy ra là số chẵn”, \(D\) là biến cố “2 thẻ lấy ra là số lẻ”
\( \Rightarrow A = C \cup D\)
Lấy ngẫu nhiên đồng thời 2 thẻ trong tổng số 25 thẻ chẵn có \({C}_{25}^2 = 300\) cách
\( \Rightarrow n\left( C \right) = 300 \Rightarrow P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega \right)}} = \frac{{300}}{{1225}} = \frac{{12}}{{49}}\)
Lấy ngẫu nhiên đồng thời 2 thẻ trong tổng số 25 thẻ lẻ có \({C}_{25}^2 = 300\) cách
\( \Rightarrow n\left( D \right) = 300 \Rightarrow P\left( C \right) = \frac{{n\left( D \right)}}{{n\left( \Omega \right)}} = \frac{{300}}{{1225}} = \frac{{12}}{{49}}\)
Vì \(C\) và \(D\) là hai biến cố xung khắc nên \(P\left( A \right) = P\left( C \right) + P\left( D \right) = \frac{{12}}{{49}} + \frac{{12}}{{49}} = \frac{{24}}{{49}}\)
b) Gọi \(E\) là biến cố “1 thẻ chia hết cho 4, 1 thẻ là số lẻ”
\( \Rightarrow B = C \cup E\)
Lấy ngẫu nhiên 1 thẻ trong tổng số 12 thẻ chia hết cho 4 có \({C}_{12}^1 = 12\) cách
Lấy ngẫu nhiên 1 thẻ trong tổng số 25 thẻ lẻ có \({C}_{25}^1 = 25\) cách
\( \Rightarrow n\left( E \right) = 12.25 = 300 \Rightarrow P\left( E \right) = \frac{{n\left( E \right)}}{{n\left(\Omega \right)}} = \frac{{300}}{{1225}} = \frac{{12}}{{49}}\)
Vì \(C\) và \(E\) là hai biến cố xung khắc nên \(P\left( B \right) = P\left( C \right) + P\left( E \right) = \frac{{12}}{{49}} + \frac{{12}}{{49}} = \frac{{24}}{{49}}\)
Không gian mẫu: \(C_{15}^4\)
a.
Số cách lấy 4 viên bi trong đó có 3 viên màu đỏ: \(C_7^3C_8^1\)
Xác suất: \(P=\dfrac{C_7^3.C_8^1}{C_{15}^4}\)
b.
Lấy 4 viên không có viên đỏ nào (lấy từ 8 viên 2 màu còn lại): \(C_8^4\) cách
Lấy 4 viên có ít nhất 1 viên đỏ: \(C_{15}^4-C_8^4\)
Xác suất: \(P=\dfrac{C_{15}^4-C_8^4}{C_{15}^4}\)
c.
Các trường hợp thỏa mãn: (2 đỏ 1 xanh 1 vàng), (1 đỏ 2 xanh 1 vàng), (1 đỏ 1 vàng 2 xanh)
Số cách lấy: \(C_7^2C_5^1C_3^1+C_7^1C_5^2C_3^1+C_7^1C_5^1C_3^2\)
Xác suất: \(P=\dfrac{C_7^2C_5^1C_3^1+C_7^1C_5^2C_3^1+C_7^1C_5^1C_3^2}{C_{15}^4}\)
1. Từ 1->100 dãy các số chia hết cho 4 là:
4,8,....,96,100. có 25 số hạng
Từ 1->100 dãy các số chia hết cho 9 là:
9,18,....,90,99. có 11 số hạng
Từ 1->100 dãy các số là bội cung của 4 và 9 là: 36,72. có 2 số hạng
=> Tổng các số chia hết cho 4 hoặc 9 là: 25+11-2=34(số hạng)
Vậy xác suất để số trên tấm thẻ là bội của 4 hoặc 9 là:34/100=0,34
2. Để tích 2 số là bội của 5 thì trong 2 số có 1 số là bội của 5 hoặc cả 2 số đều là bội của 5
Từ 1->100 dãy các số là bội của 5 là:
5,10,....95,100 . có 20 số hạng
Xét biến cố A: trong 2 tấm thẻ không có số nào là bội của 5
Số trường hợp xảy ra biến cố là: \(C_{80}^2=3160\)
kHÔNG GIÁN mẫu khi lấy 2 số tử 100 số:\(C_{100}^2=4950\)
=> Xác suất biến cố đề cho chính là phủ định của biến cố A
=> \(P\left(\overline{A}\right)=1-p\left(A\right)=1-\frac{3160}{4950}=\frac{179}{495}\)
1.
\(\left|\Omega\right|=15\)
a, \(P\left(A\right)=\dfrac{7}{15}\)
b, \(P\left(B\right)=\dfrac{2}{5}\)
c, \(P\left(C\right)=\dfrac{3}{5}\)
2.
\(\left|\Omega\right|=C^5_{18}\)
a, \(\left|\Omega_A\right|=C^5_5+C^5_6+C^5_7\)
\(P\left(B\right)=\dfrac{C^5_5+C^5_6+C^5_7}{C^5_{18}}=\dfrac{1}{306}\)
b, TH1: 2 bi đỏ, 1 bi xanh, 2 bi vàng
\(\Rightarrow\) Có \(C^2_6.C^1_5.C^2_7\) cách lấy.
TH2: 2 bi đỏ, 2 bi xanh, 1 bi vàng
\(\Rightarrow\) Có \(C^2_6.C^2_5.C^1_7\) cách lấy.
\(\Rightarrow\left|\Omega_C\right|=C^2_6.C^1_5.C^2_7+C^2_6.C^2_5.C^1_7\)
\(\Rightarrow P\left(C\right)=\dfrac{C^2_6.C^1_5.C^2_7+C^2_6.C^2_5.C^1_7}{C^5_{18}}=\dfrac{10}{51}\)
c, \(\overline{D}\) là biến cố không lấy ra bi xanh nào.
\(\left|\Omega_{\overline{D}}\right|=C^5_{13}\)
\(\Rightarrow P\left(\overline{D}\right)=\dfrac{C^5_{13}}{C^5_{18}}=\dfrac{143}{952}\)
\(\Rightarrow P\left(D\right)=1-\dfrac{143}{952}=\dfrac{809}{952}\)