Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Gọi 2 số là a,b (\(a,b\inℤ\))
Ta có: a+b=51(*)
Mà 2/5a=1/6b
=> a=5/12b
Thay vào (*) ta có: 17/12b=51
=>b=36
Bài 1 :
Gọi số thứ nhất và số thứ hai lần lượt là x và y (x,y thuộc z)
Tổng hai số bằng : \(x+y=51\left(1\right)\)
Biết 2/5 số thứ nhất thì bằng 1/6 số thứ hai
\(x\frac{2}{5}-y\frac{1}{6}=0\left(2\right)\)
Từ 1 và 2 ta suy ra được hệ phương trình sau :
\(\hept{\begin{cases}x+y=51\\x\frac{2}{5}-y\frac{1}{6}=0\end{cases}}\)\(< =>\hept{\begin{cases}x=51-y\\\frac{2x}{5}-\frac{y}{6}=0\end{cases}}\)
\(< =>\frac{\left(51-y\right)2}{5}-\frac{y}{6}=0\)\(< =>\frac{102-2y}{5}-\frac{y}{6}=0\)
\(< =>\frac{102-2y}{5}=\frac{y}{6}\)\(< =>\left(102-2y\right)6=5y\)
\(< =>612-12y=5y\)\(< =>612=17y\)
\(< =>y=\frac{612}{17}=36\left(3\right)\)
Thay 3 vào 1 ta được : \(x+y=51\)
\(< =>x+36=51< =>x=51-36=15\)
Vậy số thứ nhất và số thứ hai lần lượt là 15 và 36
Gọi số cần tìm có dạng là \(\overline{ab}\)
Theo đề, ta có hệ: b=2a và 10b+a-10a-b=18
=>2a-b=0 và -9a+9b=18
=>a=2 và b=4
⇔ 9 a - 9 b = 18
⇔ 27 a = 108 ⇔ a = 4
Suy ra b = 10 - 2.4 = 2 nên a + b = 4 + 2 = 6
Đáp án cần chọn là C
Bài 1: Gọi 2 số cần tìm là $a$ và $b$, theo giả thiết, ta có: \(\left\{{}\begin{matrix}a+b=59\\3a-2b=7\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}b=59-a\\3a-2\left(59-a\right)-7=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}b=59-a\\5a-125=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}b=59-a\\a=\frac{125}{5}=25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=34\\a=25\end{matrix}\right.\)
KL: .................................