Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 , (3/7)^21 :(9/49)^6
= (3/7)^21 : [(3/7)^2]^6
= (3/7)^21 : (3/7)12
= (3/7)^9
2, a) 291 và 535
ta có: 291 < 290 = (25)18 = 3218
lại có: 3218 > 2518 = (52)18 = 536 > 535
vậy 291 > 535
b) 34000 và 92000
ta có: 34000 = (34)1000 = 811000
92000 = (92)1000 = 811000
vậy 34000 = 92000
c) 2332 và 3223
ta có: 2332 < 2333 = (23)111 = 8111
3223 > 3222 = (32)111 = 9111
mà 8111 < 9111
vậy 2332 < 3223
3. n150 = (n2 )75 < 5225 = (53)75 => n2 < 53 = 125 => n2 lớn nhất = 121 => n =11.
4. M=22010-(22009+22008+22007+...+21+20)
M=22010-22009-22008-22007-...-21-20
=>2M=22011-22010-22009-22008-...-22-21
=>2M-M=22011-22010-22009-22008-...-22-21-(22010-22009-22008-22007-...-21-20)
=>M=22011-22010-22009-22008-...-22-21-22010+22009+22008+22007+...+21+20
=22011-22010-22010+20
=22011-2.22010+1
=22011-22011+1
=1
Vậy M=1
\(Bai1:\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6=\frac{3^{21}}{7^{21}}:\frac{\left(3^2\right)^6}{\left(7^2\right)^6}=\frac{3^{21}}{7^{21}}:\frac{3^{12}}{7^{12}}=\frac{3^{21}}{7^{21}}.\frac{7^{12}}{3^{12}}=\frac{3^9}{7^9}\)
Bài 2: a) 291 = (213)7 = 81927
535 = (55)7 = 31257
Vì 81927 > 31257
=> 291 > 535
b) 34000 = (32)2000 = 92000
=> 34000 = 92000
c) 2332 < 2333 = (23)111 = 8111
3223 > 3222 = (32)111 = 9111
Vì 8111 < 9111
=> 2332 < 3223
Bài 3: n150 < 5225
=> (n2)75 < (53)75
=> n2 < 53
=> n2 < 125
Mà n lớn nhất => n2 lớn nhất => n2 = 121
=> n = 11
Bài 4: Đặt A = 22009 + 22008 + ... + 21 + 20
A = 20 + 21 + ... + 22008 + 22009
2A = 21 + 22 + ... + 22009 + 22010
2A - A = (21 + 22 + ... + 22009 + 22010) - (20 + 21 + ... + 22008 + 22009)
A = 22010 - 20
A = 22010 - 1
=> M = 22010 - (22010 - 1)
M = 22010 - 22010 + 1
M = 1
\(M=2^{2010}-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\)
\(2^{2010}-M=2^{2009}+2^{2008}+...+2^1+2^0\)
\(2\left(2^{2010}-M\right)=2^1+2^2+....+2^{2009}+2^{2010}\)
\(2\left(2^{2010}-M\right)-\left(2^{2010}-M\right)=\left(2^1+2^2+....+2^{2009}+2^{2010}\right)-\left(2^0+2^1+...+2^{2008}+2^{2009}\right)\)
\(2^{2010}-M=2^{2010}-1\)
\(M=2^{2010}-2^{2010}+1\)
\(M=1\)
M=22010-(22009+22008+22007+...+21+20)
M=22010-22009-22008-22007-...-21-20
=>2M=22011-22010-22009-22008-...-22-21
=>2M-M=22011-22010-22009-22008-...-22-21-(22010-22009-22008-22007-...-21-20)
=>M=22011-22010-22009-22008-...-22-21-22010+22009+22008+22007+...+21+20
=22011-22010-22010+20
=22011-2.22010+1
=22011-22011+1
=1
Vậy M=1
Đặt M = 2^2010 - A
\(2A=2+2^2+...+2^{2010}\)
\(2A-A=\left(2+2^2+...+2^{2010}\right)-\left(1+2+...+2^{2009}\right)\)
\(A=2^{2010}-1\)
\(\Rightarrow M=2^{2010}-2^{2010}+1\)
\(\Rightarrow M=1\)
Vậy,.............
\(M=2^{2010}-2^{2009}-2^{2008}-...-2-1\)
\(\Rightarrow2M=2^{2011}-2^{2010}-2^{2009}-...-2^2-2\)
\(\Rightarrow2M-M=2^{2011}-2^{2010}-1=2^{2010-1}\)
32010- ( 32009 + 32008 + ... + 3 + 1 )
Đặt A = 1 + 3 + ... + 32009
=> 3A = 3 + 32 + ... + 32010
=> 3A - A = 32010 - 1
Nên 32010 - ( 32010 - 1 ) = 1
M=2^2010-(2^2009+2^2008+2^2007+...+2^1+2^0)
M=22010-22009-22008-22007-...-21-20
=>2M=22011-22010-22009-22008-...-22-21
=>2M-M=22011-22010-22009-22008-...-22-21-(22010-22009-22008-22007-...-21-20)
=>M=22011-22010-22009-22008-...-22-21-22010+22009+22008+22007+...+21+20
=22011-22010-22010+20
=22011-2.22010+1
=22011-22011+1
=1
vậy M=1
đúng mjk với nha
ĐẶt A = 2^0 + 2^1 +.. + 2^2009
2A = 2^ 1 + 2^2 +.... + 2^2009 +2 ^2010
2A - A = 2^1 + 2^2 + . ... + 2^2009 +2^2010 - 2 ^0 - 2^1 - 2^2 -..-2^3009
A = 2^2010 - 2^0 = 2^2010 - 1
M = 2^2010 - A = 2^2010 - (2^2010 - 1) = 2^2010 - 2^2010 +1 = 1