\(\frac{8^{10}}{4^{14}}\)
  • \(\frac{...">
    K
    Khách

    Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

    26 tháng 7 2020

    1. \(\frac{8^{10}}{4^{14}}=\frac{\left(2^3\right)^{10}}{\left(2^2\right)^{14}}=\frac{2^{30}}{2^{28}}=2^2=4\)

    2. \(\frac{6^5.5^3}{10^3}=\frac{6^5}{2^3}=\frac{6^3.6^2}{2^3}=3^3.6^2=27.36=972\)

    26 tháng 7 2020

    1) \(\frac{8^{10}}{4^{14}}=\frac{\left(2^3\right)^{10}}{\left(2^2\right)^{14}}=\frac{2^{30}}{2^{28}}=2^2=4\)

    2) \(\frac{6^5.5^3}{10^3}=\frac{2^5.3^5.5^3}{2^3.5^3}=2^2.3^5=972\)

    Học tốt!!!!

    22 tháng 8 2020

    1) Ta có : \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

    \(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)

    Vì \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\)

    => x + 1 = 0

    => x = - 1

    b) \(\frac{x+4}{2006}+\frac{x+3}{2007}=\frac{x+2}{2008}+\frac{x+1}{2009}\)

    => \(\left(\frac{x+4}{2006}+1\right)+\left(\frac{x+3}{2007}+1\right)=\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+1}{2009}+1\right)\)

    => \(\frac{x+2010}{2006}+\frac{x+2010}{2007}=\frac{x+2010}{2008}+\frac{x+2010}{2009}\)

    => \(\left(x+2010\right)\left(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)=0\)

    Vì \(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\ne0\)

    => x + 2010 = 0

    => x = -2010

    c) \(\frac{x+1945}{45}+\frac{x+1954}{54}=\frac{x+1975}{75}+\frac{x+1969}{69}\)

    \(\Rightarrow\left(\frac{x+1945}{45}-1\right)+\left(\frac{x+1954}{54}-1\right)=\left(\frac{x+1975}{75}-1\right)+\left(\frac{x+1969}{69}-1\right)\)

    => \(\frac{x+1900}{45}+\frac{x+1900}{54}=\frac{x+1900}{75}+\frac{x+1900}{69}\)

    => \(\left(x+1900\right)\left(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}\right)=0\)

    => \(x+1900=0\left(\text{Vì }\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}\ne0\right)\)

    => x = -1900

    d) \(\frac{x+2008}{10}+\frac{x+2010}{9}=\frac{x+2012}{8}+\frac{x+2014}{7}\)

    => \(\left(\frac{x+2008}{10}+2\right)+\left(\frac{x+2010}{9}+2\right)=\left(\frac{x+2012}{8}+2\right)+\left(\frac{x+2014}{7}+2\right)\)

    => \(\frac{x+2028}{10}+\frac{x+2028}{9}=\frac{x+2028}{8}+\frac{x+2028}{7}\)

    => \(\left(x+2028\right)\left(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}\right)=0\)

    => x + 2028 = 0 \(\left(\text{Vì }\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}\ne0\right)\)

    => x = -2028

    22 tháng 8 2020

    1) Ta có: \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

            \(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)

            \(\Leftrightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)

      + TH1\(x+1=0\)\(\Leftrightarrow\)\(x=-1\)

      + TH2\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}=0\)

          Vì \(\hept{\begin{cases}\frac{1}{10}>\frac{1}{13}\\\frac{1}{11}>\frac{1}{14}\\\frac{1}{12}>0\end{cases}}\)\(\Rightarrow\)\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}>\frac{1}{13}+\frac{1}{14}\)

                \(\Rightarrow\)\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}>0\)

                 mà \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}=0\)

                 \(\Rightarrow\)Phương trình trên vô nghiệm

    Vậy \(x=-1\)

    2) Ta có: \(\frac{x+4}{2006}+\frac{x+3}{2007}=\frac{x+2}{2008}+\frac{x+1}{2009}\)

            \(\Leftrightarrow\left(\frac{x+4}{2006}+1\right)+\left(\frac{x+3}{2007}+1\right)-\left(\frac{x+2}{2008}+1\right)-\left(\frac{x+1}{2009}+1\right)=0\)

            \(\Leftrightarrow\frac{x+2010}{2006}+\frac{x+2010}{2007}-\frac{x+2010}{2008}-\frac{x+2010}{2009}=0\)

            \(\Leftrightarrow\left(x+2010\right).\left(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)=0\)

      + TH1\(x+2010=0\)\(\Leftrightarrow\)\(x=-2010\)

      + TH2\(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}=0\)

          Vì \(\hept{\begin{cases}\frac{1}{2006}>\frac{1}{2008}\\\frac{1}{2007}>\frac{1}{2009}\end{cases}}\)\(\Rightarrow\)\(\frac{1}{2006}+\frac{1}{2007}>\frac{1}{2008}+\frac{1}{2009}\)

                  \(\Rightarrow\)\(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}>0\)

                   mà \(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}=0\)

                   \(\Rightarrow\)Phương trình trên vô nghiệm

    Vậy \(x=-2010\)

    3) Ta có: \(\frac{x+1945}{45}+\frac{x+1954}{54}=\frac{x+1975}{75}+\frac{x+1969}{69}\)

            \(\Leftrightarrow\left(\frac{x+1945}{45}-1\right)+\left(\frac{x+1954}{54}-1\right)-\left(\frac{x+1975}{75}-1\right)-\left(\frac{x+1969}{69}-1\right)=0\)

            \(\Leftrightarrow\frac{x+1900}{45}+\frac{x+1900}{54}-\frac{x+1900}{75}-\frac{x+1900}{69}=0\)

           \(\Leftrightarrow\left(x+1900\right).\left(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}\right)=0\)

      

      + TH1\(x+1900=0\)\(\Leftrightarrow\)\(x=-1900\)

      + TH2\(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}=0\)

          Vì \(\hept{\begin{cases}\frac{1}{45}>\frac{1}{75}\\\frac{1}{54}>\frac{1}{69}\end{cases}}\)\(\Rightarrow\)\(\frac{1}{45}+\frac{1}{54}>\frac{1}{75}+\frac{1}{69}\)

                  \(\Rightarrow\)\(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}>0\)

                   mà \(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}=0\)

                   \(\Rightarrow\)Phương trình trên vô nghiệm

    Vậy \(x=-1900\)

    4) Ta có: \(\frac{x-99}{5}+\frac{x-97}{7}=\frac{x-95}{9}+\frac{x-93}{11}\)

             \(\Leftrightarrow\left(\frac{x-99}{5}-1\right)+\left(\frac{x-97}{7}-1\right)-\left(\frac{x-95}{9}-1\right)-\left(\frac{x-93}{11}-1\right)=0\)

             \(\Leftrightarrow\frac{x-104}{5}+\frac{x-104}{7}-\frac{x-104}{9}-\frac{x-104}{11}=0\)

             \(\Leftrightarrow\left(x-104\right).\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)=0\)

      

      + TH1\(x-104=0\)\(\Leftrightarrow\)\(x=104\)

      + TH2\(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}=0\)

          Vì \(\hept{\begin{cases}\frac{1}{5}>\frac{1}{7}\\\frac{1}{9}>\frac{1}{11}\end{cases}}\)\(\Rightarrow\)\(\frac{1}{5}+\frac{1}{7}>\frac{1}{9}+\frac{1}{11}\)

                  \(\Rightarrow\)\(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}>0\)

                   mà \(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}=0\)

                   \(\Rightarrow\)Phương trình trên vô nghiệm

    Vậy \(x=104\)

    5) Ta có: \(\frac{x+2008}{10}+\frac{x+2010}{9}=\frac{x+2012}{8}+\frac{x+2014}{7}\)

            \(\Leftrightarrow\left(\frac{x+2008}{10}+2\right)+\left(\frac{x+2010}{9}+2\right)-\left(\frac{x+2012}{8}+2\right)-\left(\frac{x+2014}{7}+2\right)=0\)

            \(\Leftrightarrow\frac{x+2028}{10}+\frac{x+2028}{9}-\frac{x+2028}{8}-\frac{x+2028}{7}=0\)

            \(\Leftrightarrow\left(x+2028\right).\left(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}\right)=0\)

        + TH1\(x+2028=0\)\(\Leftrightarrow\)\(x=-2028\)

        + TH2\(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}=0\)

          Vì \(\hept{\begin{cases}\frac{1}{10}< \frac{1}{8}\\\frac{1}{9}< \frac{1}{7}\end{cases}}\)\(\Rightarrow\)\(\frac{1}{10}+\frac{1}{9}< \frac{1}{8}+\frac{1}{7}\)

                  \(\Rightarrow\)\(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}< 0\)

                   mà \(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}=0\)

                   \(\Rightarrow\)Phương trình trên vô nghiệm

    Vậy \(x=-2028\)

    Chúc bn hok tốt nha

    31 tháng 1 2019

    zài thế

    23 tháng 6 2020

    Mấy câu trên dễ , bạn có thể tự làm được 

    Chứng minh \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{10^2}< 1\)

    Đặt  \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{10^2}\)

    Ta có : \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)

    \(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)

    \(\frac{1}{4^2}=\frac{1}{4\cdot4}< \frac{1}{3\cdot4}\)

    ...

    \(\frac{1}{10^2}=\frac{1}{10\cdot10}< \frac{1}{9\cdot10}\)

    => \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{10^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)

    => \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{10^2}< \frac{1}{1}-\frac{1}{10}\)

    => \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{10^2}< \frac{9}{10}\)

    Lại có : \(\frac{9}{10}< 1\)

    => \(A< \frac{9}{10}< 1\)

    => \(A< 1\left(đpcm\right)\)

    13 tháng 6 2016

    648

    10 tháng 8 2016

    Toán lớp 6

    10 tháng 8 2016

    1) \(\frac{2}{3}+x=-\frac{4}{5}\)

    \(x=\left(-\frac{4}{5}\right)-\frac{2}{3}\)

    \(x=-1\frac{7}{15}\)

    Vậy \(x=-1\frac{7}{15}\)

    2) \(\frac{2}{5}-x=-\frac{1}{3}\)

    \(x=\frac{2}{5}-\left(-\frac{1}{3}\right)\)

    \(x=\frac{11}{15}\)

    Vậy \(x=\frac{11}{15}\)

    3) \(1-\frac{x}{3}=1\frac{1}{2}\)

    \(\frac{x}{3}=1-1\frac{1}{2}\)

    \(\frac{x}{3}=-\frac{1}{2}\)

    \(\Rightarrow x=\frac{\left(-1\right)\cdot3}{2}\)

    \(x=-1\frac{1}{2}\)

    4) \(1-\left(\frac{2x}{3}+2\right)=-1\)

    \(\frac{2x}{3}+2=1-\left(-1\right)\)

    \(\frac{2x}{3}+2=2\)

    \(\frac{2x}{3}=2-2\)

    \(\frac{2x}{3}=0\)

    \(\Rightarrow x=0\)

    Vậy \(x=0\)

    28 tháng 4 2017

    bài khó nhất nhé

    2. Ta có : 

    \(P=\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+\frac{49}{1}\)

    cộng vào 48 phân số đầu với 1, trừ phân số cuối đi 48 ta được :

    \(P=\left(\frac{1}{49}+1\right)+\left(\frac{2}{48}+1\right)+\left(\frac{3}{47}+1\right)+...+\left(\frac{48}{2}+1\right)+\left(\frac{49}{1}-48\right)\)

    \(P=\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}+\frac{50}{50}\)

    \(P=\frac{50}{50}+\frac{50}{49}+\frac{50}{48}+...+\frac{50}{2}\)

    \(P=50.\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+...+\frac{1}{2}\right)\)

    \(\Rightarrow\frac{S}{P}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{48}+\frac{1}{49}+\frac{1}{50}}{50.\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+...+\frac{1}{2}\right)}=\frac{1}{50}\)

    9 tháng 3 2019

    câu 5đáp án là72

    27 tháng 7 2018

    1.Vì  \(\frac{x}{-2}=\frac{-8}{x}\Rightarrow-2.\left(-8\right)=x.x\)

                                            \(16=x.x\)hay \(4^2=x^2\Rightarrow x=4\)

    2. Rút gọn : \(\frac{20}{28}=\frac{5}{7}=\frac{-5}{-7}\)

    \(\Rightarrow x=-7\)

    3. \(\frac{x}{2}-\frac{11}{5}=\frac{7}{8}\times\frac{64}{49}\)

    \(\frac{x}{2}-\frac{11}{5}=\frac{8}{7}\)

    Mà \(\frac{8}{7}+\frac{11}{5}=\frac{502}{35}\)

    \(\Rightarrow x=\frac{234}{35}\)

    27 tháng 7 2018

    1) \(\frac{x}{-2}=\frac{-8}{x}\)

    \(\Rightarrow x\times x=\left(-2\right)\times\left(-8\right)\)

    \(\Rightarrow x^2=16\)

    \(\Rightarrow\orbr{\begin{cases}x^2=4^2\\x^2=\left(-4\right)^2\end{cases}\Rightarrow}\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

    Vậy x = 4 hoặc x = -4

    2) \(\frac{-5}{x}=\frac{20}{28}\)

    \(\Rightarrow\frac{-5}{x}=\frac{5}{7}\)

    \(\Rightarrow5\times x=\left(-5\right)\times7\)

    \(\Rightarrow5\times x=-35\)

    \(\Rightarrow x=\left(-35\right):5\)

    \(\Rightarrow x=-7\)

    Vậy x = -7

    3) \(\frac{x}{2}-\frac{11}{5}=\frac{7}{8}\times\frac{64}{49}\)

    \(\Rightarrow\frac{x}{2}-\frac{11}{5}=\frac{8}{7}\)

    \(\Rightarrow\frac{x}{2}=\frac{8}{7}+\frac{11}{5}\)

    \(\Rightarrow\frac{x}{2}=\frac{117}{35}\)

    \(\Rightarrow35x=117\times2\)

    \(\Rightarrow35x=234\)

    \(\Rightarrow x=234:35\)

    \(\Rightarrow x=\frac{234}{35}\)

    Vậy  \(x=\frac{234}{35}\)

    4) \(\frac{x}{5}+\frac{9}{2}=\frac{6}{7}\times\frac{36}{48}\)

    \(\Rightarrow\frac{x}{5}+\frac{9}{2}=\frac{9}{14}\)

    \(\Rightarrow\frac{x}{5}=\frac{9}{14}-\frac{9}{2}\)

    \(\Rightarrow\frac{x}{5}=\frac{-27}{7}\)

    \(\Rightarrow7x=\left(-27\right)\times5\)

    \(\Rightarrow7x=-135\)

    \(\Rightarrow x=\left(-135\right):7\)

    \(\Rightarrow x=\frac{-135}{7}\)

    Vậy  \(x=\frac{-135}{7}\)

    5) \(\frac{3}{x-5}=\frac{-4}{x+2}\)

    \(\Rightarrow\frac{3}{x-5}+\frac{4}{x+2}=0\)

    \(\Rightarrow3\left(x+2\right)+4\left(x-5\right)=0\)

    \(\Rightarrow3x+6+4x-20=0\)

    \(\Rightarrow\left(3x+4x\right)+\left(6-20\right)=0\)

    \(\Rightarrow7x-14=0\)

    \(\Rightarrow7x=14\)

    \(\Rightarrow x=14:7\)

    \(\Rightarrow x=2\)

    Vậy x = 2

    _Chúc bạn học tốt_

    8 tháng 6 2020

    \(=-2.\frac{2}{3}.\frac{1}{3}:\left(\frac{-1}{6}+0,5\right)-\left(-2009^0\right)-\left(-2\right)^2\)

    \(=\frac{4}{3}.\frac{1}{3}:\left(\frac{-1}{6}+\frac{1}{2}\right)-1.4\)

    \(=\frac{4}{3}.\frac{1}{3}+4\)

    \(=4+4\)

    \(=8\)

    29 tháng 6 2020

    A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

    \(=1-\frac{1}{50}=\frac{49}{50}\)

    B = \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}=\frac{\left(2.3.4.5\right).\left(2.3.4.5\right)}{\left(1.2.3.4\right).\left(3.4.5.6\right)}=\frac{5.2}{1.6}=\frac{5}{3}\)

    C = \(\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}=\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)

    \(=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{61}\right)=\frac{3}{2}.\frac{56}{305}=\frac{74}{305}\)

    29 tháng 6 2020

    Bài làm:

    1) \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

    \(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)

    \(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

    \(A=1-\frac{1}{50}=\frac{49}{50}\)

    2) \(B=\frac{2^2.3^2.4^2.5^2}{1.2.3^2.4^2.5.6}=\frac{2.5}{6}=\frac{5}{3}\)

    3) \(C=\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{59.61}\)

    \(C=\frac{3}{2}\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)

    \(C=\frac{3}{2}\left(\frac{7-5}{5.7}+\frac{9-7}{7.9}+...+\frac{61-59}{59.61}\right)\)

    \(C=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)\)

    \(C=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{61}\right)\)

    \(C=\frac{3}{2}.\frac{56}{305}=\frac{84}{305}\)