\(\widehat{B}\) và \(\widehat{C}\) của tam giác A...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2020

a) góc A = 70o, => B + C = 110o

=> B =(110 + 10) : 2 = 60

C = 60 - 10 = 50

b) góc A = 100 , => B + C = 80

=> B = (80 + 50) : 2 = 65

C = 65 - 50 = 15

c) B = 2C => 180 - 60 = 3C = 120

=> C = 40

=> B = 40 . 2 = 80

19 tháng 2 2020

viết mấy kí tự dài nên bạn tự thêm vào nha :D

các bn giúp mk nhé ai nhanh nhất mk tk cho.

9 tháng 8 2017

1) 

Tổng của \(\widehat{B}\) và \(\widehat{C}\) là:

\(180^o-60^o=120^o\)

Ta có \(\widehat{B}=2\widehat{C}\Leftrightarrow\widehat{B}=\frac{2}{1}\widehat{C}\)

Áp dụng bài toán tổng tỉ.

Tổng số phần bằng nhau là:

2 + 1 = 3 phần.

Góc B là:

120 : 3 x 2 = 80 độ

Góc C là:

120 - 80 = 40 độ.

Vậy ......................

2) Theo đề ta có:

\(\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{4}\)  và \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{4}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{2+3+4}=\frac{180^o}{9}=20^o\)

\(\hept{\begin{cases}\frac{\widehat{A}}{2}=20^o\Rightarrow\widehat{A}=20^o.2=40^o\\\frac{\widehat{B}}{3}=20^o\Rightarrow\widehat{B}=20^o.3=60^o\\\frac{\widehat{C}}{4}=20^o\Rightarrow\widehat{C}=20^o.4=80^o\end{cases}}\)

Vậy ..............................

12 tháng 11 2016

a) ΔABC có:

\(\widehat{A}\) + \(\widehat{B}\) + \(\widehat{C}\) = 180o hay 100o + \(\widehat{B}\) + \(\widehat{C}\) = 180o

\(\Rightarrow\) \(\widehat{B}\) + \(\widehat{C}\) = 180o - 100o = 80o

Ta có: \(\widehat{B}\) + \(\widehat{C}\) = 80o(cm trên) ; \(\widehat{B}\) - \(\widehat{C}\) = 50o (gt)

\(\Rightarrow\) \(\widehat{B}\) = (80o + 50o ) : 2 = 65o

\(\widehat{C}\) = (80o - 50o) : 2 = 15o

b) ΔABC có:

\(\widehat{B}\) + \(\widehat{A}\) + \(\widehat{C}\) = 180o hay 80o + \(\widehat{A}\) + \(\widehat{C}\) = 180o

\(\Rightarrow\) \(\widehat{A}\) + \(\widehat{C}\) = 180o - 80o = 100o

Ta có: 3 . \(\widehat{A}\) = 2 . \(\widehat{C}\) => \(\frac{\widehat{A}}{2}\) = \(\frac{\widehat{C}}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{\widehat{A}}{2}\) = \(\frac{\widehat{C}}{3}\) = \(\frac{\widehat{A}+\widehat{C}}{2+3}\) = \(\frac{100}{5}\) = 20

\(\Rightarrow\) \(\begin{cases}\widehat{A}=40^o\\\widehat{C}=60^o\end{cases}\)

 

13 tháng 11 2016

cảm ơn bạn nhiều lắm nhờ bạn mình mới sống đc đấy yeu

19 tháng 2 2018

a) Ta có: \(\)\(\widehat{A}+\widehat{B}+\widehat{C}=180^{\circ}\) (Tổng ba góc trong tam giác)

<=> \(\left.\begin{matrix} \widehat{B}+\widehat{C}=180-\widehat{A}=180^{\circ}-100^{\circ}=80^{\circ} & & \\ \widehat{B}-\widehat{C}=30^{\circ} & & \end{matrix}\right\}\)

=> \(2\widehat{B}=110^{\circ}\)

=> \(\widehat{B}=55^{\circ}\)

=> \(\widehat{C}=25^{\circ}\)

P/s: câu b tương tự

19 tháng 2 2018

thanks

23 tháng 7 2018

Bài 1: 

\(\widehat{A}\div\widehat{B}\div\widehat{C}=1\div2\div3=\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}\)

Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) (Tổng ba góc của một tam giác)

Áp dụng t/d dãy tỉ số bằng nhau, ta có: \(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{1+2+3}=\frac{180^0}{6}=30\)

\(\Rightarrow\widehat{A}=30.1=30^0\)

     \(\widehat{B}=30.2=60^0\)

     \(\widehat{C}=30.3=90^0\)

Vậy .....

23 tháng 7 2018

Bài 2: 

Gọi số đo các góc của tam giác ABC lần lượt là: a;b;c (\(a;b;c\inℕ^∗\) )

Ta có: \(a-b=18^0\Rightarrow a=18+b\)

          \(b-c=18^0\Rightarrow c=b-18\)

Trong tam giác ABC có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

                      \(\Leftrightarrow a+b+c=180^0\)

                       \(\Leftrightarrow18+b+b+b-18=180^0\)

                        \(\Leftrightarrow3b=180^0\Rightarrow b=60\Rightarrow\widehat{B}=60^0\)

                          \(\Rightarrow\widehat{A}=18^0+\widehat{B}=18^0+60^0=78^0\)

                          \(\Rightarrow\widehat{C}=180^0-60^0-78^0=42^0\)

Vậy .....

15 tháng 8 2017

Bạn tự vẽ hình nha 

Bài giải 

a, Ta có : Tổng 3 trong một tam giác bằng 1800

=> \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)

Hay : \(\widehat{A}=180^0-\left(\widehat{B}+\widehat{C}\right)\)

\(\Rightarrow\widehat{A}=180^0-\left(70^0+30^0\right)\)

\(\Rightarrow\widehat{A}=80^0\)

Mặt khác : tia phân giác của góc A cắt ABC tại D

\(\Rightarrow\widehat{BAD}=\widehat{DAC}=\frac{80^0}{2}=40^0\)

Ta có : \(\widehat{ADC}=180^0-\left(\widehat{DAC}+\widehat{C}\right)\)

\(\Rightarrow\widehat{ADC}=180^0-\left(40^0+30^0\right)\)

\(\Rightarrow\widehat{ADC}=110^0\)

bn nào có thể giải câu b giúp mk được ko.

20 tháng 11 2018

a) ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\Leftrightarrow\widehat{B}+\widehat{C}=100^0\Leftrightarrow\widehat{B}=100^0-\widehat{C}\)

\(\widehat{B}-\widehat{C}=20^0\Leftrightarrow100^0-\widehat{C}-\widehat{C}=20^0\Leftrightarrow\widehat{C}=40^0\)

vậy \(\widehat{B}=100^0-\widehat{C}=60^0\)

b) ta có \(\widehat{B}=3\widehat{C}\)

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\Leftrightarrow\widehat{B}+\widehat{C}=110^0\Leftrightarrow4\widehat{C}=110^0\Rightarrow\widehat{C}=27,5^0\)

\(\widehat{B}=3\widehat{C}=27,5^0.3=82,5^0\)

30 tháng 9 2016

Ta có : \(\widehat{B}+\widehat{C}=180^o-\widehat{A}=180^o-75^o=105^o\)

a/ \(\widehat{B}=2\widehat{C}\Rightarrow2\widehat{C}+\widehat{C}=105^o\Rightarrow3\widehat{C}=105^o\Rightarrow\widehat{C}=35^o\Rightarrow\widehat{B}=70^o\)

b/ \(\widehat{B}-\widehat{C}=25^o\Rightarrow\widehat{B}=\widehat{C}+25^o\Rightarrow\widehat{C}+25^o+\widehat{C}=105^o\Rightarrow2\widehat{C}=80^o\Rightarrow\widehat{C}=40^o\Rightarrow\widehat{B}=65^o\)

5 tháng 7 2017

Xét \(\Delta ABC\)có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) (tổng ba góc trong 1 tam giác)

Nên \(\widehat{B}+\widehat{C}=180^o-\widehat{A}\)

<=> \(\widehat{B}+\widehat{C}=180^o-\widehat{A}=180^o-75^o=105^o\)

Mà \(\widehat{B}=2\widehat{C}\)

Suy ra : \(2\widehat{C}+\widehat{C}=105^o\)

\(\Leftrightarrow3\widehat{C}=105^o\)

\(\Rightarrow\widehat{C}=\frac{105^o}{3}=35^o\)

\(\widehat{B}=105^o-35^o=70^o\)