Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,A=\(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{23.24}\)
A=\(\frac{1}{2}+\frac{2}{1}-\frac{1}{3}+\frac{3}{1}-\frac{1}{4}+......\frac{23}{1}-\frac{1}{24}\)
A=\(\frac{1}{2}-\frac{1}{24}\)
A=\(\frac{11}{24}\)
Ta có :
\(H=\frac{15}{90.94}+\frac{15}{94.98}+\frac{15}{98.102}+...+\frac{15}{146.150}\)
\(H=\frac{15}{4}\left(\frac{4}{90.94}+\frac{4}{94.98}+\frac{4}{98.102}+...+\frac{4}{146.150}\right)\)
\(H=\frac{15}{4}\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+\frac{1}{98}-\frac{1}{102}+...+\frac{1}{146}-\frac{1}{150}\right)\)
\(H=\frac{15}{4}\left(\frac{1}{90}-\frac{1}{150}\right)\)
\(H=\frac{15}{4}.\frac{1}{225}\)
\(H=\frac{1}{60}\)
Vậy \(H=\frac{1}{60}\)
Chúc bạn học tốt ~
\(H=\frac{15}{90\cdot94}+\frac{15}{94\cdot98}+\frac{15}{98\cdot102}+...+\frac{15}{146\cdot150}\)
\(H=15\left(\frac{1}{90\cdot94}+\frac{1}{94\cdot98}+\frac{1}{98\cdot102}+...+\frac{1}{146\cdot150}\right)\)
\(H=15\left[\frac{1}{4}\left(\frac{4}{90\cdot94}+\frac{4}{94\cdot98}+\frac{4}{98\cdot102}+...+\frac{4}{146\cdot150}\right)\right]\)
\(H=15\left[\frac{1}{4}\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+\frac{1}{98}-\frac{1}{102}+...+\frac{1}{146}-\frac{1}{150}\right)\right]\)
\(H=15\left[\frac{1}{4}\left(\frac{1}{90}-\frac{1}{150}\right)\right]\)
\(H=15\left[\frac{1}{4}\cdot\frac{1}{225}\right]\)
\(H=15\cdot\frac{1}{900}\)
\(H=\frac{1}{60}\)
D=\(\frac{6}{15.18}\)+\(\frac{6}{18.21}\)+...+\(\frac{6}{87.90}\)
D=2.\(\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90}\right)\)
D=2.\(\frac{1}{18}\)
D=\(\frac{1}{9}\)
Vậy D=\(^{\frac{1}{9}}\)
\(D=\frac{6}{15.18}+\frac{6}{18.21}+\frac{6}{21.24}+...+\frac{6}{87.90}\)
\(D=2.\left(\frac{3}{15.18}+\frac{3}{18.21}+\frac{3}{21.24}+...+\frac{3}{87.90}\right)\)
\(D=2.\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+\frac{1}{21}-\frac{1}{24}+...+\frac{1}{87}-\frac{1}{90}\right)\)
\(D=2.\left(\frac{1}{15}-\frac{1}{90}\right)\)
\(D=2.\left(\frac{6}{90}-\frac{1}{90}\right)\)
\(D=2.\frac{1}{18}\)
\(D=\frac{1}{9}\)
\(E=\frac{1}{25\cdot27}+\frac{1}{27\cdot29}+...+\frac{1}{73\cdot75}\)
\(E=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+...+\frac{1}{73}-\frac{1}{75}\right)\)
\(\Rightarrow E=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{75}\right)=\frac{1}{2}\cdot\frac{2}{75}=\frac{1}{75}\)
\(F=\frac{15}{90\cdot94}+\frac{15}{94\cdot98}+...+\frac{15}{146\cdot150}\)
\(F=\frac{15}{4}\cdot\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+...+\frac{1}{146}-\frac{1}{150}\right)\)
\(\Rightarrow F=\frac{15}{4}\cdot\left(\frac{1}{90}-\frac{1}{150}\right)=\frac{15}{4}\cdot\frac{1}{225}=\frac{1}{60}\)
\(G=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
\(G=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(G=\frac{5}{4\cdot7}+\frac{5}{7\cdot10}+\frac{5}{10\cdot13}+...+\frac{5}{25\cdot28}\)
\(G=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(\Rightarrow G=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{28}\right)=\frac{5}{3}\cdot\frac{3}{14}=\frac{5}{14}\)
\(A=\frac{15}{90.94}+\frac{15}{94.98}+...+\frac{15}{146.150}\)
\(A=15\left(\frac{1}{90.94}+\frac{1}{94.98}+...+\frac{1}{146.150}\right)\)
\(A=\frac{15}{4}\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+...+\frac{1}{146}-\frac{1}{150}\right)\)
\(A=\frac{15}{4}\left(\frac{1}{90}-\frac{1}{150}\right)\)
\(A=\frac{15}{4}.\frac{1}{225}\)
\(A=\frac{1}{60}\)
\(M=\frac{6}{15.18}+\frac{6}{18.21}+\frac{6}{21.24}+.....+\frac{6}{87.90}\)
\(\Rightarrow M=6\left(\frac{1}{15.18}+\frac{1}{18.21}+\frac{1}{21.24}+....+\frac{1}{87.90}\right)\)
\(\Rightarrow M=6\left[\frac{1}{3}\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+\frac{1}{21}-\frac{1}{24}+.....+\frac{1}{87}-\frac{1}{90}\right)\right]\)
\(\Rightarrow M=6\left[\frac{1}{3}\left(\frac{1}{15}-\frac{1}{90}\right)\right]\Rightarrow M=6\left(\frac{1}{3}.\frac{1}{18}\right)\Rightarrow M=6.\frac{1}{54}\Rightarrow M=\frac{1}{9}\)
\(\frac{15}{90.94}+\frac{15}{94.98}+\frac{15}{98.102}+...+\frac{15}{146.150}\)
\(=\frac{15}{4}\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+\frac{1}{98}-\frac{1}{102}+...+\frac{1}{146}-\frac{1}{150}\right)\)
\(=\frac{15}{4}\left(\frac{1}{90}-\frac{1}{150}\right)\)
\(=\frac{15}{4}.\frac{1}{225}\)
\(=\frac{1}{60}\)
\(\frac{15}{90\cdot94}+\frac{15}{94\cdot98}+\frac{15}{98\cdot102}+...+\frac{15}{146\cdot150}\)
\(=\frac{15}{4}\cdot\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+\frac{1}{98}-\frac{1}{102}+...+\frac{1}{146}-\frac{1}{150}\right)\)
\(=\frac{15}{4}\cdot\left(\frac{1}{90}-\frac{1}{150}\right)\)
\(=\frac{15}{4}\cdot\frac{1}{225}=\frac{1}{60}\)
\(A=\frac{15}{90.94}+\frac{15}{94.98}+...+\frac{15}{146.150}\)
\(A=\frac{4}{4}\left(\frac{15}{90.94}+\frac{15}{94.98}+...+\frac{15}{146.150}\right)\)
\(A=\frac{15}{4}\left(\frac{4}{90.94}+\frac{4}{94.98}+...+\frac{4}{146.150}\right)\)
\(A=\frac{15}{4}\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+...+\frac{1}{146}-\frac{1}{150}\right)\)
\(A=\frac{15}{4}\left(\frac{1}{90}-\frac{1}{150}\right)\)
\(A=\frac{15}{4}.\frac{1}{225}=\frac{1}{60}\)
\(B=\frac{6}{15.18}+\frac{6}{18.21}+...+\frac{6}{87.90}\)
\(B=\frac{3}{3}\left(\frac{6}{15.18}+\frac{6}{18.21}+...+\frac{6}{87.90}\right)\)
\(B=2\left(\frac{3}{15.18}+\frac{3}{18.21}+...+\frac{3}{87.90}\right)\)
\(B=2\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90}\right)\)
\(B=2\left(\frac{1}{15}-\frac{1}{90}\right)\)
\(B=2.\frac{1}{18}=\frac{1}{9}\)
Trả lời:
\(A=\frac{15}{90.94}+\frac{15}{94.98}+...+\frac{15}{146.150}\)
\(A=\frac{15}{4}.\left(\frac{4}{90.94}+\frac{4}{94.98}+...+\frac{4}{146.150}\right)\)
\(A=\frac{15}{4}.\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+...+\frac{1}{146}-\frac{1}{150}\right)\)
\(A=\frac{15}{4}.\left(\frac{1}{90}-\frac{1}{150}\right)\)
\(A=\frac{15}{4}.\frac{1}{225}\)
\(A=\frac{1}{60}\)
\(B=\frac{6}{15.18}+\frac{6}{18.21}+...+\frac{6}{87.90}\)
\(B=2.\left(\frac{3}{15.18}+\frac{3}{18.21}+...+\frac{3}{87.90}\right)\)
\(B=2.\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90}\right)\)
\(B=2.\left(\frac{1}{15}-\frac{1}{90}\right)\)
\(B=2.\frac{1}{18}\)
\(B=\frac{1}{9}\)